Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
6 results
Search Results
Item Open Access Additive manufacturing of β-tricalcium phosphate components via Fused Deposition of Ceramics (FDC)(2020) Eßlinger, Steffen; Grebhardt, Axel; Jäger, Jonas; Kern, Frank; Killinger, Andreas; Bonten, Christian; Gadow, RainerDas Paper beschreibt die Compoundierung bioaktiver Keramik (Beta-Tricalciumphosphat) in einer organischen Matrix, die anschließende Extrusion zu Filamenten, die für den FDM-3D-Druck geeignet sind, sowie die Formgebund zu Scaffolds mittels additiver Fertigung. Weiterhin werden fertigungsprozessbegleitende Untersuchungen zur Entbinderung und Sinterung durchgeführt.Item Open Access Inversely 3D-printed β-TCP scaffolds for bone replacement(2019) Seidenstücker, Michael; Lange, Svenja; Esslinger, Steffen; Latorre, Sergio H.; Krastev, Rumen; Gadow, Rainer; Mayr, Hermann O.; Bernstein, AnkeItem Open Access Deposition of 3YSZ-TiC PVD coatings with high-power impulse magnetron sputtering (HiPIMS)(2021) Gaedike, Bastian; Guth, Svenja; Kern, Frank; Killinger, Andreas; Gadow, RainerOptimized coating adhesion and strength are the advantages of high-power impulse magnetron sputtering (HiPIMS) as an innovative physical vapor deposition (PVD) process. When depositing electrically non-conductive oxide ceramics as coatings with HiPIMS without dual magnetron sputtering (DMS) or mid-frequency (MF) sputtering, the growing coating leads to increasing electrical insulation of the anode. As a consequence, short circuits occur, and the process breaks down. This phenomenon is also known as the disappearing anode effect. In this study, a new approach involving adding electrically conductive carbide ceramics was tried to prevent the electrical insulation of the anode and thereby guarantee process stability. Yttria-stabilized zirconia (3YSZ) with 30 vol.% titanium carbide (TiC) targets are used in a non-reactive HiPIMS process. The main focus of this study is a parameter inquisition. Different HiPIMS parameters and their impact on the measured current at the substrate table are analyzed. This study shows the successful use of electrically conductive carbide ceramics in a non-conductive oxide as the target material. In addition, we discuss the observed high table currents with a low inert gas mix, where the process was not expected to be stable.Item Open Access Synthesis of submicron, nanostructured spherical powders of Y3Al5O12-phases by the method by ultrasonic spray pyrolysis and investigation of their structure and properties(2022) Gadow, Rainer; Antipov, Valery I.; Kolmakov, Alexey G.; Vinogradov, Leonid V.; Larionov, Maxim D.; Mukhina, Yuliya E.The results of laboratory studies of the submicron Y3Al5O12 (YAG) phase powders synthesized by ultrasonic spray pyrolysis are presented. A structural-phase analysis of aerosol powders was carried out and an assessment of the tendency of the synthesized powders to sintering was made. The working solution for the aerosol was prepared on the basis of distilled water with aluminum nitrate hexahydrate Al(NO3)3 x 6H2O and yttrium nitrate hexahydrate Y(NO3)3 x 6H2O dissolved in specified proportions. Spherical submicron nonagglomerated powders of Y3Al5O12–phase with a small YAlO3-phase content were synthesized by this method. Powder granules with a diameter of 0.75 microns had a nano-fragmentary polycrystalline structure with an average crystal size of 16 nm. During the sintering of powders with such a unique structure, diffusion mass transfer processes are activated, which contributes to a more efficient compaction of the material. Aerosol powder sintering experiments have shown that the best results are achieved when the process is carried out at 1700 °C for 6 h. As a result, a dense YAG-ceramic material was obtained, the structure of which does not contain residual pores and is characterized by a uniform distribution of equiaxed grains.Item Open Access High velocity suspension flame spraying (HVSFS) of metal suspensions(2020) Blum, Matthias; Krieg, Peter; Killinger, Andreas; Gadow, Rainer; Luth, Jan; Trenkle, FabianThermal spraying of metal materials is one of the key applications of this technology in industry for over a hundred years. The variety of metal-based feedstocks (powders and wires) used for thermal spray is incredibly large and utilization covers abrasion and corrosion protection, as well as tribological and electrical applications. Spraying metals using suspension- or precursor-based thermal spray methods is a relatively new and unusual approach. This publication deals with three metal types, a NiCr 80/20, copper (Cu), and silver (Ag), sprayed as fine-grained powders dispersed in aqueous solvent. Suspensions were sprayed by means of high-velocity suspension spraying (HVSFS) employing a modified TopGun system. The aim was to prepare thin and dense metal coatings (10-70 µm) and to evaluate the process limits regarding the oxygen content of the coatings. In case of Cu and Ag, possible applications demand high purity with low oxidation of the coating to achieve for instance a high electrical conductivity or catalytic activity. For NiCr however, it was found that coatings with a fine dispersion of oxides can be usable for applications where a tunable resistivity is in demand. The paper describes the suspension preparation and presents results of spray experiments performed on metal substrates. Results are evaluated with respect to the phase composition and the achieved coating morphology. It turns out that the oxidation content and spray efficiency is strongly controlled by the oxygen fuel ratio and spray distance.Item Open Access Copper-enriched hydroxyapatite coatings obtained by high-velocity suspension flame spraying : effect of various gas parameters on biocompatibility(2024) Le, Long-Quan R. V.; Lanzino, M. Carolina; Blum, Matthias; Höppel, Anika; Al-Ahmad, Ali; Killinger, Andreas; Gadow, Rainer; Rheinheimer, Wolfgang; Seidenstuecker, MichaelHydroxyapatite (HAp)-coated bone implants are frequently used for orthopaedic or dental implants since they offer high biocompatibility and osteoconductivity. Yet, problems such as infections, e.g. periprosthetic joint infections, occur when implanting foreign material into the body. In this study, HAp coatings were produced via high-velocity suspension flame spraying (HVSFS). This method allows for the production of thin coatings. We investigated the effects of different gas parameters on the coating properties and on the biocompatibility, which was tested on the human osteosarcoma cell line MG63. Furthermore, Copper (Cu) was added to achieve antibacterial properties which were evaluated against standard microorganisms using the airborne assay. Three gas parameter groups (low, medium, and high) with different Cu additions (0 wt.%, 1 wt.% and 1.5 wt.%) were evaluated. Our findings show that porosity as well as hardness can be controlled through gas parameters. Furthermore, we showed that it is possible to add Cu through external injection. The Cu content in the coating as well as the release varies with different gas parameters. Both antibacterial efficacy as well as biocompatibility are affected by the Cu content. We could significantly reduce the amount of colony-forming units (CFU) in all coatings for E. coli , CFU for S. aureus was reduced by adding 1.5 wt.% of Cu to the coating. The biocompatibility testing showed a cytotoxicity threshold at a Cu-release of 14.3 mg/L in 120 hours. Based on our findings, we suggest medium gas parameters for HVSFS and the addition of 1 wt.% Cu to the coating. With these parameters, a reasonable antibacterial effect can be achieved while maintaining sufficient biocompatibility.