Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    ItemOpen Access
    A new approach to modelling friction stir welding using the CEL method
    (2013) Hoßfeld, Max; Roos, Eberhard
    Although friction stir welding (FSW) has made its way to industrial application particularly in the last years, the FSW process, its influences and their strong interactions among themselves are still not thoroughly understood. This lack of understanding mainly arises from the adverse observability of the actual process with phenomena like material flow and deposition, large material deformations and thermomechanical interactions determining the mechanical properties of the weld. To close this gap an appropriate numerical model validated by experiments may be helpful. But because of the issues mentioned above most numerical techniques are not capable of modelling the FSW process. Therefore in this study a Coupled Eulerian-Lagrangian (CEL) approach is used for modelling the whole FSW process. A coupled thermomechanical 3D FE model is developed with the CEL formulation given in the FE code ABAQUS® V6.12. Results for temperature fields, weld formation and the possibility of void formation are shown and validated.
  • Thumbnail Image
    ItemOpen Access
    A fully coupled thermomechanical 3D model for all phases of friction stir welding
    (2016) Hoßfeld, Max
    Although friction stir welding (FSW) has made its way to industrial application particularly in the last years, the FSW process, its influences and their strong interactions among themselves are still not thoroughly understood. The lack of understanding mainly arises from the adverse observability of the actual process with phenomena like material ow and deposition, large material deformations plus their complex thermo-mechanical interactions determining the weld formation and its mechanical properties. A validated numerical process model may be helpful for closing this gap as well as for an isolated assessment of individual influences and phenomena. Hereby such a model will be a valuable assistance for process and especially tool development. In this study a Coupled Eulerian-Lagrangian (CEL) approach with Abaqus V6.14 is used for modeling the whole FSW process within one continuous model. The resolution reached allows not only simulating the joining of two sheets into one and real tooling geometries but also burr and internal void formation. Results for temperature fields, surface and weld formation as well as process forces are shown and validated.
  • Thumbnail Image
    ItemOpen Access
    A process-planning framework for sustainable manufacturing
    (2021) Reiff, Colin; Buser, Matthias; Betten, Thomas; Onuseit, Volkher; Hoßfeld, Max; Wehner, Daniel; Riedel, Oliver
    Process planning in manufacturing today focuses on optimizing the conflicting targets of cost, quality, and time. Due to increasing social awareness and subsequent governmental regulation, environmental impact becomes a fourth major aspect. Eventually, sustainability in manufacturing ensures future competitiveness. In this paper, a framework for the planning of sustainable manufacturing is proposed. It is based on the abstraction and generalization of manufacturing resources and part descriptions, which are matched and ranked using a multi-criteria decision analysis method. Manufacturing resources provide values for cost, quality, time and environmental impacts, which multiply with their usage within a manufacturing task for a specific part. The framework is validated with a detailed modeling of a laser machine as a resource revealing benefits and optimization potential of the underlying data model. Finally, the framework is applied to a use case of a flange part with two different manufacturing strategies, i.e., laser metal-wire deposition and conventional milling. The most influential parameters regarding the environmental impacts are the raw material input, the manufacturing energy consumption and the machine production itself. In general, the framework enabled the identification of non-predetermined manufacturing possibilities and the comprehensive comparison of production resources.
  • Thumbnail Image
    ItemOpen Access
    Challenges and state of the art in industrial FSW - pushing the limits by high speed welding of complex 3D contours
    (2018) Hoßfeld, Max; Hofferbert, Dave
    Over the last 25 years, Friction Stir Welding (FSW) has been gradually moving from research over first applications into mass production. Today, requirements for consistently high-quality welds occur in parallel with a demand for high throughput as well as production flexibility. This paper gives an insight to the state of the art of industrial FSW mass production, current trends, challenges and market demands as well as the potential of high speed complex contour welding on modern multi-axis FSW machinery with respect to process parameters, material properties, machinery requirements and control algorithms, and methods. The design strategy of complex 3D contours as a chance to maximize efficiency is introduced; challenges of its implementation with respect to the state of the art in FSW are described. This includes the importance of advanced force control methods, fixture design, clamping forces and methodology for sustaining high-quality welds as well as the management of distortions and residual stresses by thermal management and optimization of process parameters. Examples of successful weld performance are described. Steps to be taken that result in high-quality welds, as well as situations to be avoided, are discussed. The publication was written based on results of the DFG project RO 651/16-1 that was carried out at the University of Stuttgart.
  • Thumbnail Image
    ItemOpen Access
    High speed friction stir welding of thick copper plates
    (2015) Hoßfeld, Max
    When welding large copper parts, the process is strongly limited by the high thermal conductivity and capacity as well as the high temperature strength of copper. These slow down the welding process and require a large heat input. By this the process forces are high and probe failure is a severe issue. Typical welding speeds of thick copper plates today are around 50 to 150 mm/min under laboratory like conditions, requiring a spindle torque up to 1000 Nm, excluding usual multipurpose FSW-machines from this application. This study shows the process and tool development including the verification of a robust tool design. The process is carried out on a multipurpose machine reaching welding speeds up to 500 mm/min in 20 mm rolled Cu-OF. A significant reduction of the process forces, especially traverse force and spindle moment is reached. Due to the relatively low heat input good mechanical properties could be achieved. Tool design, parameters, microstructure, hardness profiles and tensile properties are shown.
  • Thumbnail Image
    ItemOpen Access
    Experimentelle, analytische und numerische Untersuchungen des Rührreibschweißprozesses
    (2016) Hoßfeld, Max; Roos, Eberhard (Prof. Dr.-Ing. habil.)
    Mit dem Rührreibschweißverfahren steht seit einigen Jahren eine Fügetechnologie zur Verfügung, mit der viele fügetechnische Problemstellungen speziell beim Fügen von Aluminiumlegierungen gelöst oder vermieden werden können. Mittels Rührreibschweißen können sämtliche Aluminiumlegierungen zuverlässig, hocheffizient und mit einem sehr hohen Verbindungswirkungsgrad gefügt werden. Dabei weisen rührreibgeschweißte Verbindungen bereits ohne Nachbehandlung sehr gute statische und zyklische Festigkeiten auf, welche meist deutlich über jenen von Schmelzschweißverfahren liegen. Darüber hinaus ist das Verfahren hoch automatisierbar und kann direkt modular in andere Fertigungsverfahren integriert werden, wodurch große wirtschaftliche und prozesstechnische Potentiale entstehen. Auf Grund dieser positiven Eigenschaften wurde Rührreibschweißen in den letzten Jahren sehr schnell vom Anwender angenommen und findet aktuell eine rasche Verbreitung in den verschiedensten Branchen. Dabei erfolgte die Übernahme des Prozesses teils erheblich schneller als Forschung wie auch Anwendungsentwicklung der anwenderseitigen Umsetzung durch eine grundlegende Beschreibung des Prozesses folgen konnten. Dies wiederum führte dazu, dass heute noch teilweise erhebliche Lücken in Verständnis und wissenschaftlicher Beschreibung selbst elementarer Bestandteile des Prozesses bestehen. Ziel dieser Arbeit ist daher, zum erweiterten Verständnis des Rührreibschweißprozesses, seiner Wirkmechanismen und Phänomene von den physikalischen Grundlagen bis hin zum Bauteilverhalten beizutragen. Hierfür wird auf ein dreigliedriges Vorgehen aus analytischer und experimenteller Charakterisierung sowie numerischer Modellierung zurückgegriffen. Dabei dienen die erstgenannten Inhalte als Basis zur physikalischen Beschreibung und Abgrenzung der Prozessphänomene und zur späteren numerischen Beschreibung. Diese soll durch eine detaillierte und physikalisch korrekte Wiedergabe den Zugang zu den nicht direkt beobachtbaren Prozessphänomenen in der Fügezone ermöglichen. Da der Rührreibschweißprozess wesentlich durch Wechselwirkungen von mechanischer Prozesswirkung und Werkstoffverhalten dominiert wird, erfolgt nach der Darstellung prozesstechnischen Grundlagen zunächst eine Charakterisierung und Modellierung der verwendeten Aluminiumlegierungen Al Mg4,5Mn0,4 und Al Mg1SiCu (EN AW-5182 und 6061) und ihrer relevanten physikalischen Größen bei prozesstypischen Bedingungen. Hierauf bauen die analytischen und experimentellen Untersuchungen des Prozesses auf. Die Charakteristiken des Prozesses werden zunächst anhand der Entwicklung von Prozessleistung und Streckenenergie mit Überdeckungsgrad und Einschweißtiefe diskutiert, wobei die selbststabilisierenden Eigenschaften des Prozesses, die Kontaktinitiierung und die Rückwirkung der statischen und dynamischen Kräfte auf die Anlagentechnik gesondert berücksichtigt werden. Aus der Summe dieser Untersuchungen wird die Wichtigkeit des Reibkontaktes zwischen Werkzeug und Werkstück für Wärmeeinbringung und Materialfluss deutlich. Diesen Ergebnissen entsprechend folgt eine isolierte Untersuchung anhand von etwa 130 Reibversuchen mittels Telemetriesystem bei gleichzeitiger Messung der Temperaturen am Kontakt, welche durch entsprechende Schweißversuche ergänzt werden. Dabei kann nach dem Reibübergang eine Mehrlagenscherung sowie ein mitrotierender Verformungszylinder am Schweißwerkzeug festgestellt werden. Durch den dann werkstoffmechanisch dominierten Reibkontakt wird es möglich, das Grundprinzip der Viskoplastizität respektive das Werkstoffmodell zur Beschreibung des Reibkontaktes zu nutzen, wodurch typischerweise nötige Annahmen entfallen können. Auf der Basis der Untersuchungen der mechanischen Prozessinitiierung baut in der Arbeit die Analyse der beiden zentralen Prozessphänomene Wärmehaushalt und Materialfluss auf. Zur Analyse des Wärmehaushaltes erfolgt zunächst eine analytische Abgrenzung anhand von physikalischer Bilanzierung und Grundgleichungen. Dem schließen sich Untersuchungen von Fügetemperatur, typischen Temperaturprofilen wie auch konduktivem und konvektivem Wärmetransport in der Fügezone an. Ein weiterer Fokus liegt auf der Beschreibung von Kontakt, Wärmeübertragung und -aufteilung zwischen Werkstück, Spindel und Spanntechnik in Abhängigkeit von Pressung und Temperatur. Eng verbunden mit diesen Inhalten ist die Untersuchung des Materialflusses. Für diesen werden zunächst die Rand- und Kontinuitätsbedingungen hergeleitet und analysiert. Danach erfolgt eine experimentelle Untersuchung anhand von Querschliffen, Mikrostrukturentwicklung sowie eingebrachten Kupferfolien. Deren Verteilung in der Schweißnaht wird für verschiedene Einschweißtiefen Computertomographie analysiert, wobei die Selbstähnlichkeit der Materialströmungsregime am Werkzeug aber auch deren unterschiedliche Ausprägungen in Abhängigkeit der Einschweißtiefen deutlich werden. Aus den Untersuchungen resultieren detaillierte Aussagen zur Formierung der Fügezone mit bandförmigen Strukturen und Ablage des Werkstoffes hinter dem Werkzeug. Im Kontext erfolgt eine gesonderte Berücksichtigung von Einflussgrößen wie Rundlauftoleranz der Spindel, Werkzeuggeometrie und Prozessparametern. Da die Formierung quasi aller Schweißimperfektionen auf einen unzureichenden Materialfluss zurückgeführt werden kann, erfolgt eine Darstellung typischer Schweißfehler und deren Ursachen. Dabei kann durch die Analyse hochdynamischer Kraftanteile ein Zugang zu den lokalen Prozessphänomenen und eine Basis für eine Methodik zur Onlinefehlerdetektion aufgezeigt werden. Abgerundet werden diese Ergebnisse durch eine Beschreibung und Diskussion der Wirkung des Rührreibschweißprozesses auf die Festigkeits- und Bauteileigenschaften. Besonderes Augenmerk liegt hierbei auf der prozessinduzierten Mikrostrukturentwicklung und der Beeinflussung der festigkeitssteigernden Mechanismen von Aluminiumlegierungen. Auf diesen Inhalten aufbauend erfolgt zur Erstellung der Simulationsmethodik zunächst eine Übersicht zu bestehenden Modellierungsansätzen sowie der zu berücksichtigenden Prozessphänomene. Die Modellierung erfolgt in der Arbeit mittels eines gekoppelten Euler-Lagrange-Ansatzes (CEL) und der Volume-of-Fluid-Methode teilweise gefüllter Zellen. Hierdurch wird es erstmals möglich, alle Prozessphasen in einem durchgängigen Modell sowie eine reale Stoßgeometrie zu simulieren. Mit Hilfe der Simulationsmethodik können die zentralen Phänomene wie auch Details und Einflüsse des Rührreibschweißprozesses detailliert vorhergesagt und analysiert sowie in Abhängigkeit von Prozessparametern, Randbedingungen und Werkzeuggeometrien optimiert werden. Ebenso wird es möglich, die Wirkung des Prozesses mit geometrischer und mikrostruktureller Ausprägung der Schweißnaht und Fehlerformierung vorherzusagen, wodurch die Optimierung der mechanischen Eigenschaften von rührreibgeschweißten Verbindungen möglich wird. Die simulativ ermittelten Prozesskräfte weisen eine sehr gute Übereinstimmung mit Experimenten auf, wobei die Abtastrate der Kräfte modernen NC-gesteuerter Anlagen entspricht.