Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
4 results
Search Results
Item Open Access Assessment of high enthalpy flow conditions for re-entry aerothermodynamics in the plasma wind tunnel facilities at IRS(2021) Loehle, Stefan; Zander, Fabian; Eberhart, Martin; Hermann, Tobias; Meindl, Arne; Massuti-Ballester, Bartomeu; Leiser, David; Hufgard, Fabian; Pagan, Adam S.; Herdrich, Georg; Fasoulas, StefanosThis article presents the full operational experimental capabilities of the plasma wind tunnel facilities at the Institute of Space Systems at the University of Stuttgart. The simulation of the aerothermodynamic environment experienced by vehicles entering the atmosphere of Earth is attempted using three different facilities. Utilizing the three different facilities, the recent improvements enable a unique range of flow conditions in relation to other known facilities. Recent performance optimisations are highlighted in this article. Based on the experimental conditions demonstrated a corresponding flight scenario is derived using a ground-to-flight extrapolation approach based on local mass-specific enthalpy, total pressure and boundary layer edge velocity gradient. This shows that the three facilities cover the challenging parts of the aerothermodynamics along the entry trajectory from Low Earth Orbit. Furthermore, the more challenging conditions arising during interplanetary return at altitudes above 70 km are as well covered.Item Open Access 3-D visualization of transparent fluid flows from snapshot light field data(2021) Eberhart, Martin; Loehle, Stefan; Offenhäuser, PhilippThis paper presents the use of light field data, recorded in a snapshot from a single plenoptic camera, for 3-D visualization of transparent fluid flows. We demonstrate the transfer of light field deconvolution, a method so far used only in microscopy, to macroscopic scales with a photographic setup. This technique is suitable for optically thin media without any additional particles or tracers and allows volumetric investigation of non-stationary flows with a simple single camera setup. An experimental technique for the determination of the shift-variant point spread functions is presented, which is a key for applications using a photographic optical system. The paper shows results from different test cases with increasing complexity. Reconstruction of the 3-D positions of randomly distributed light points demonstrates the achievable high accuracy of the technique. Gas flames and droplets of a fluorescent liquid show the feasibility of the proposed method for the visualization of transparent, luminous flows. The visualizations exhibit high quality and resolution in low-contrast flows, where standard plenoptic software based on computer vision fails. Axial resolution depends on the data and is about an order of magnitude lower than the lateral resolution for simple point objects. The technique also allows the time-resolved analysis of flow structures and the generation of 3D3C-velocity fields from a sequence of exposures.Item Open Access Extension of the plasma radiation database PARADE for the analysis of meteor spectra(2021) Loehle, Stefan; Eberhart, Martin; Zander, Fabian; Meindl, Arne; Rudawska, Regina; Koschny, Detlef; Zender, Joe; Dantowitz, Ron; Jenniskens, PeterThe advancement in the acquisition of spectral data from meteors, as well as the capability to analyze meteoritic entries in ground testing facilities, requires the assessment of the performance of software tools for the simulation of spectra for different species. The Plasma Radiation Database, PARADE, is a line‐by‐line emission calculation tool. This article presents the extensions implemented for the simulation of meteor entries with the additional atomic species Na, K, Ti, V, Cr, Mn, Fe, Ca, Ni, Co, Mg, Si, and Li. These atoms are simulated and compared to ground testing spectra and to observed spectra from the CILBO observatory. The diatomic molecules AlO and TiO have now been added to the PARADE database. The molecule implementations have been compared to the results of a simple analytical program designed to approximate the vibrational band emission of diatomic molecules. AlO and TiO have been identified during the airborne observation campaigns of re‐entering man‐made objects WT1190F and CYGNUS OA6. Comparisons are provided showing reasonable agreement between observation and simulation.Item Open Access Novel heat flux controlled surface cooling for hypersonic flight(2023) Hufgard, Fabian; Duernhofer, Christian; Fasoulas, Stefanos; Loehle, StefanThis paper presents a new method in theory and experiment to adjust the transpiration cooling based on the actual measured heat flux. This is particularly useful in extreme heating environments, e.g. atmospheric entry flight or combustion chamber applications. In such environments, usually cooling is set constant based on the vehicle design, yet a mass efficient and performant cooling is sought after. We present a method with real-time surface heat flux determination of the transpiration cooled wall and an automatic adjustment of the cooling. The heat flux is determined based on a system identification process. The heat flux measurement itself is derived non-intrusively from the measurement of pressure inside the plenum, i.e. the region between mass flow controller and porous wall. The particular advantage of this system is that the heat shield material is not weakened by any sensor system and its performance is optimized with respect to cooling needed at a certain heating level. Another new feature of the pressure heat flux transformation is the attenuation of a destabilizing positive feedback loop, where the transpiration cooling controller’s output (i.e. mass flow rate) strongly influences its input (i.e. plenum pressure). We describe the identification of the model parameters for the heat flux determination, which are found and verified by a calibration approach. The controlled cooling was demonstrated in a hot air plasma flow with a reference heat flux of up to 1.4 MW/m 2. The results show the performance and verify the applicability in a real flight environment.