Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 8 of 8
  • Thumbnail Image
    ItemOpen Access
    Determination of muscle shape deformations of the tibialis anterior during dynamic contractions using 3D ultrasound
    (2024) Sahrmann, Annika S.; Vosse, Lukas; Siebert, Tobias; Handsfield, Geoffrey G.; Röhrle, Oliver
    Purpose: In this paper, we introduce a novel method for determining 3D deformations of the human tibialis anterior (TA) muscle during dynamic movements using 3D ultrasound. Materials and Methods: An existing automated 3D ultrasound system is used for data acquisition, which consists of three moveable axes, along which the probe can move. While the subjects perform continuous plantar- and dorsiflexion movements in two different controlled velocities, the ultrasound probe sweeps cyclically from the ankle to the knee along the anterior shin. The ankle joint angle can be determined using reflective motion capture markers. Since we considered the movement direction of the foot, i.e., active or passive TA, four conditions occur: slow active, slow passive, fast active, fast passive. By employing an algorithm which defines ankle joint angle intervals, i.e., intervals of range of motion (ROM), 3D images of the volumes during movement can be reconstructed. Results: We found constant muscle volumes between different muscle lengths, i.e., ROM intervals. The results show an increase in mean cross-sectional area (CSA) for TA muscle shortening. Furthermore, a shift in maximum CSA towards the proximal side of the muscle could be observed for muscle shortening. We found significantly different maximum CSA values between the fast active and all other conditions, which might be caused by higher muscle activation due to the faster velocity. Conclusion: In summary, we present a method for determining muscle volume deformation during dynamic contraction using ultrasound, which will enable future empirical studies and 3D computational models of skeletal muscles.
  • Thumbnail Image
    ItemOpen Access
    A muscle model for injury simulation
    (2023) Millard, Matthew; Kempter, Fabian; Fehr, Jörg; Stutzig, Norman; Siebert, Tobias
    Car accidents frequently cause neck injuries that are painful, expensive, and difficult to simulate. The movements that lead to neck injury include phases in which the neck muscles are actively lengthened. Actively lengthened muscle can develop large forces that greatly exceed the maximum isometric force. Although Hill-type models are often used to simulate human movement, this model has no mechanism to develop large tensions during active lengthening. When used to simulate neck injury, a Hill model will underestimate the risk of injury to the muscles but may overestimate the risk of injury to the structures that the muscles protect. We have developed a musculotendon model that includes the viscoelasticity of attached crossbridges and has an active titin element. In this work we evaluate the proposed model to a Hill model by simulating the experiments of Leonard et al. [1] that feature extreme active lengthening.
  • Thumbnail Image
    ItemOpen Access
    Improving the accuracy of musculotendon models for the simulation of active lengthening
    (2023) Millard, Matthew; Kempter, Fabian; Stutzig, Norman; Siebert, Tobias; Fehr, Jörg
    Vehicle accidents can cause neck injuries which are costly for individuals and society. Safety systems could be designed to reduce the risk of neck injury if it were possible to accurately simulate the tissue-level injuries that later lead to chronic pain. During a crash, reflexes cause the muscles of the neck to be actively lengthened. Although the muscles of the neck are often only mildly injured, the forces developed by the neck’s musculature affect the tissues that are more severely injured. In this work, we compare the forces developed by MAT_156, LS-DYNA’s Hill-type model, and the newly proposed VEXAT muscle model during active lengthening. The results show that Hill-type muscle models underestimate forces developed during active lengthening, while the VEXAT model can more faithfully reproduce experimental measurements.
  • Thumbnail Image
    ItemOpen Access
    On the validation of human body models with a driver-in-the-loop simulator
    (2018) Kempter, Fabian; Fehr, Jörg; Stutzig, Norman; Siebert, Tobias
    For the development of modern integrated safety systems, standard simulation models of anthropometric test devices, often called crash test dummies, are inappropriate for Pre-Crash investigations due to missing activation possibilities, tuned characteristics for one specific accident scenario and high passive stiffness properties. To validate safety concepts getting active prior to the crash new tools like suitable virtual models of human occupants are required. Human Body Models (HBM) provide a higher biofidelity and can be equipped with active muscle elements enabling different muscle activation strategies. To improve the muscle activation strategy and the stiffness properties of active HBMs, validation processes on the basis of low-acceleration experiments are inevitable. In contrast to Post Mortem Human Surrogates only low-severity tests can be performed with real human subjects. This paper presents the workflow of a validation process based on an academic scale Driver-in-the-Loop (DiL) simulator in combination with a synchronized measurement chain consisting of an Optitrack stereo vision and an electromyography detection system.
  • Thumbnail Image
    ItemOpen Access
    Cervical muscle reflexes during lateral accelerations
    (2023) Millard, Matthew; Hunger, Susanne; Broß, Lisa; Fehr, Jörg; Holzapfel, Christian; Stutzig, Norman; Siebert, Tobias
    Autonomous vehicles will allow a variety of seating orientations that may change the risk of neck injury during an accident. Having a rotated head at the time of a rear-end collision in a conventional vehicle is associated with a higher risk of acute and chronic whiplash. The change in posture affects both the movement of the head and the response of the muscles. We are studying the reflexes of the muscles of the neck so that we can validate the responses of digital human body models that are used in crash simulations. The neck movements and muscle activity of 21 participants (11 female) were recorded at the Stuttgart FKFS mechanical driving simulator. During the maneuver we recorded the acceleration of the seat and electromyographic (EMG) signals from the sternocleidomastoid (STR) muscles using a Biopac MP 160 system (USA). As intuition would suggest, the reflexes of the muscles of the neck are sensitive to posture and the direction of the acceleration.
  • Thumbnail Image
    ItemOpen Access
    Whiplash simulation: how muscle modelling and movement interact
    (2022) Millard, Matthew; Siebert, Tobias; Stutzig, Norman; Fehr, Jörg
    Whiplash injury and associated disorders are costly to society and individuals. Accurate simulations of neck movement during car accidents are needed to assess the risk of whiplash injury. Existing simulations indicate that Hill-type muscle models are too compliant, and as a result, predict more neck movement than is observed during in-vivo experiments. Simulating head and neck movement is challenging because many of the neck muscles operate on the descending limb of the force-length curve, a region that Hill-type models inaccurately capture. Hill-type muscle models have negative stiffness on the descending limb of the force-length curve and so develop less force the more they are lengthened. Biological muscle, in contrast, can develop large transient forces during active lengthening and sustain large forces when aggressively lengthened. Recently, a muscle model has been developed that mimics the active impedance of muscle in the short range and can capture the large forces generated during extreme lengthening. In this work, we will compare the accuracy of simulated neck movements, using both a Hill-type model and the model of Millard et al., to the in-vivo neck movement. If successful, the improved accuracy of our simulations will make it possible to predict and help prevent neck injury.
  • Thumbnail Image
    ItemOpen Access
    Active exoskeleton reduces erector spinae muscle activity during lifting
    (2023) Walter, Tobias; Stutzig, Norman; Siebert, Tobias
    Musculoskeletal disorders (MSD) are a widespread problem, often regarding the lumbar region. Exoskeletons designed to support the lower back could be used in physically demanding professions with the intention of reducing the strain on the musculoskeletal system, e.g., by lowering task-related muscle activation. The present study aims to investigate the effect of an active exoskeleton on back muscle activity when lifting weights. Within the framework of the study, 14 subjects were asked to lift a 15 kg box with and without an active exoskeleton which allows the adjustment of different levels of support, while the activity of their M. erector spinae (MES) was measured using surface electromyography. Additionally, the subjects were asked about their overall rating of perceived exertion (RPE) during lifting under various conditions. Using the exoskeleton with the maximum level of support, the muscle activity was significantly lower than without exoskeleton. A significant correlation was found between the exoskeleton’s support level and the reduction of MES activity. The higher the support level, the lower the observed muscle activity. Furthermore, when lifting with the maximum level of support, RPE was found to be significantly lower than without exoskeleton too. A reduction in the MES activity indicates actual support for the movement task and might indicate lower compression forces in the lumbar region. It is concluded that the active exoskeleton supports people noticeably when lifting heavy weights. Exoskeletons seem to be a powerful tool for reducing load during physically demanding jobs and thus, their use might be helpful in lowering the risk of MSD.
  • Thumbnail Image
    ItemOpen Access
    3D ultrasound-based determination of skeletal muscle fascicle orientations
    (2024) Sahrmann, Annika S.; Vosse, Lukas; Siebert, Tobias; Handsfield, Geoffrey G.; Röhrle, Oliver
    Architectural parameters of skeletal muscle such as pennation angle provide valuable information on muscle function, since they can be related to the muscle force generating capacity, fiber packing, and contraction velocity. In this paper, we introduce a 3D ultrasound-based workflow for determining 3D fascicle orientations of skeletal muscles. We used a custom-designed automated motor driven 3D ultrasound scanning system for obtaining 3D ultrasound images. From these, we applied a custom-developed multiscale-vessel enhancement filter-based fascicle detection algorithm and determined muscle volume and pennation angle. We conducted trials on a phantom and on the human tibialis anterior (TA) muscle of 10 healthy subjects in plantarflexion (157 ± 7 ∘), neutral position (109 ± 7 ∘, corresponding to neutral standing), and one resting position in between (145 ± 6 ∘). The results of the phantom trials showed a high accuracy with a mean absolute error of 0.92 ± 0.59 ∘. TA pennation angles were significantly different between all positions for the deep muscle compartment; for the superficial compartment, angles are significantly increased for neutral position compared to plantarflexion and resting position. Pennation angles were also significantly different between superficial and deep compartment. The results of constant muscle volumes across the 3 ankle joint angles indicate the suitability of the method for capturing 3D muscle geometry. Absolute pennation angles in our study were slightly lower than recent literature. Decreased pennation angles during plantarflexion are consistent with previous studies. The presented method demonstrates the possibility of determining 3D fascicle orientations of the TA muscle in vivo.