Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
3 results
Search Results
Item Open Access Crop water productivity mapping and benchmarking using remote sensing and Google Earth Engine cloud computing(2022) Ghorbanpour, Ali Karbalaye; Kisekka, Isaya; Afshar, Abbas; Hessels, Tim; Taraghi, Mahdi; Hessari, Behzad; Tourian, Mohammad J.; Duan, ZhengScarce water resources present a major hindrance to ensuring food security. Crop water productivity (WP), embraced as one of the Sustainable Development Goals (SDGs), is playing an integral role in the performance-based evaluation of agricultural systems and securing sustainable food production. This study aims at developing a cloud-based model within the Google Earth Engine (GEE) based on Landsat -7 and -8 satellite imagery to facilitate WP mapping at regional scales (30-m resolution) and analyzing the state of the water use efficiency and productivity of the agricultural sector as a means of benchmarking its WP and defining local gaps and targets at spatiotemporal scales. The model was tested in three major agricultural districts in the Lake Urmia Basin (LUB) with respect to five crop types, including irrigated wheat, rainfed wheat, apples, grapes, alfalfa, and sugar beets as the major grown crops. The actual evapotranspiration (ET) was estimated using geeSEBAL based on the Surface Energy Balance Algorithm for Land (SEBAL) methodology, while for crop yield estimations Monteith’s Light Use Efficiency model (LUE) was employed. The results indicate that the WP in the LUB is below its optimum targets, revealing that there is a significant degree of work necessary to ameliorate the WP in the LUB. The WP varies between 0.49-0.55 (kg/m3) for irrigated wheat, 0.27-0.34 for rainfed wheat, 1.7-2.2 for apples, 1.2-1.7 for grapes, 5.5-6.2 for sugar beets, and 0.67-1.08 for alfalfa, which could be potentially increased up to 80%, 150%, 76%, 83%, 55%, and 48%, respectively. The spatial variation of the WP and crop yield makes it feasible to detect the areas with the best and poorest on-farm practices, thereby facilitating the better targeting of resources to bridge the WP gap through water management practices. This study provides important insights into the status and potential of WP with possible worldwide applications at both farm and government levels for policymakers, practitioners, and growers to adopt effective policy guidelines and improve on-farm practices.Item Open Access Improving the modeling of sea surface currents in the Persian Gulf and the Oman Sea using data assimilation of satellite altimetry and hydrographic observations(2022) Pirooznia, Mahmoud; Raoofian Naeeni, Mehdi; Atabati, Alireza; Tourian, Mohammad J.Sea surface currents are often modeled using numerical models without adequately addressing the issue of model calibration at the regional scale. The aim of this study is to calibrate the MIKE 21 numerical ocean model for the Persian Gulf and the Oman Sea to improve the sea surface currents obtained from the model. The calibration was performed through data assimilation of the model with altimetry and hydrographic observations using variational data assimilation, where the weights of the objective functions were defined based on the type of observations and optimized using metaheuristic optimization methods. According to the results, the calibration of the model generally led the model results closer to the observations. This was reflected in an improvement of about 0.09 m/s in the obtained sea surface currents. It also allowed for more accurate evaluations of model parameters, such as Smagorinsky and Manning coefficients. Moreover, the root mean square error values between the satellite altimetry observations at control stations and the assimilated model varied between 0.058 and 0.085 m. We further showed that the kinetic energy produced by sea surface currents could be used for generating electricity in the Oman Sea and near Jask harbor.Item Open Access Current availability and distribution of Congo Basin’s freshwater resources(2023) Tourian, Mohammad J.; Papa, Fabrice; Elmi, Omid; Sneeuw, Nico; Kitambo, Benjamin; Tshimanga, Raphael M.; Paris, Adrien; Calmant, StéphaneThe Congo Basin is of global significance for biodiversity and the water and carbon cycles. However, its freshwater availability and distribution remain relatively unknown. Using satellite data, here we show that currently the Congo Basin’s Total Drainable Water Storage lies within a range of 476 km 3 to 502 km 3 , unevenly distributed throughout the region, with 63% being stored in the southernmost sub-basins, Kasaï (220-228 km 3 ) and Lualaba (109-169 km 3 ), while the northern sub-basins contribute only 173 ± 8 km 3 . We further estimate the hydraulic time constant for draining its entire water storage to be 4.3 ± 0.1 months, but, regionally, permanent wetlands and large lakes act as resistors resulting in greater time constants of up to 105 ± 3 months. Our estimate provides a robust basis to address the challenges of water demand for 120 million inhabitants, a population expected to double in a few decades.