Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    ItemOpen Access
    Improving determination of pigment contents in microalgae suspension with absorption spectroscopy : light scattering effect and Bouguer-Lambert-Beer law
    (2023) Yeh, Yen-Cheng; Ebbing, Tobias; Frick, Konstantin; Schmid-Staiger, Ulrike; Haasdonk, Bernard; Tovar, Günter E. M.
    The Bouguer-Lambert-Beer (BLB) law serves as the fundamental basis for the spectrophotometric determination of pigment content in microalgae. Although it has been observed that the applicability of the BLB law is compromised by the light scattering effect in microalgae suspensions, in-depth research concerning the relationship between the light scattering effect and the accuracy of spectrophotometric pigment determination remains scarce. We hypothesized that (1) the precision of spectrophotometric pigment content determination using the BLB law would diminish with increasing nonlinearity of absorbance, and (2) employing the modified version of the BLB (mBLB) law would yield superior performance. To assess our hypotheses, we cultivated Phaeodactylum tricornutum under varying illumination conditions and nitrogen supplies in controlled indoor experiments, resulting in suspensions with diverse pigment contents. Subsequently, P. tricornutum samples were diluted into subsamples, and spectral measurements were conducted using different combinations of biomass concentrations and path lengths. This was carried out to assess the applicability of the BLB law and the nonlinearity of absorbance. The chlorophyll a and fucoxanthin contents in the samples were analyzed via high-performance liquid chromatography (HPLC) and subsequently used in our modeling. Our findings confirm our hypotheses, showing that the modified BLB law outperforms the original BLB law in terms of the normalized root mean square error (NRMSE): 6.3% for chlorophyll a and 5.8% for fucoxanthin, compared to 8.5% and 7.9%, respectively.
  • Thumbnail Image
    ItemOpen Access
    Extrusion-based 3D printing of poly(ethylene glycol) diacrylate hydrogels containing positively and negatively charged groups
    (2018) Joas, Sebastian; Tovar, Günter E. M.; Celik, Oguz; Bonten, Christian; Southan, Alexander
    Hydrogels are an interesting class of materials used in extrusion-based 3D printing, e.g., for drug delivery or tissue engineering. However, new hydrogel formulations for 3D printing as well as a detailed understanding of crucial formulation properties for 3D printing are needed. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate (PEG-DA) and the charged monomers 3-sulfopropyl acrylate and [2-(acryloyloxy)ethyl]trimethylammonium chloride are formulated for 3D printing, together with Poloxamer 407 (P407). Chemical curing of formulations with PEG-DA and up to 5% (w/w) of the charged monomers was possible without difficulty. Through careful examination of the rheological properties of the non-cured formulations, it was found that flow properties of formulations with a high P407 concentration of 22.5% (w/w) possessed yield stresses well above 100 Pa together with pronounced shear thinning behavior. Thus, those formulations could be processed by 3D printing, as demonstrated by the generation of pyramidal objects. Modelling of the flow profile during 3D printing suggests that a plug-like laminar flow is prevalent inside the printer capillary. Under such circumstances, fast recovery of a high vicosity after material deposition might not be necessary to guarantee shape fidelity because the majority of the 3D printed volume does not face any relevant shear stress during printing.
  • Thumbnail Image
    ItemOpen Access
    Resonant atmospheric plasma-sprayed ceramic layers effectively absorb microwaves at 170 GHz
    (2022) Hentrich, Andreas; Garcia, Venancio Martinez; Killinger, Andreas; Plaum, Burkhard; Lechte, Carsten; Tovar, Günter E. M.
    AbstractMicrowave absorbing layer materials (MALMs) are extremely important for many components in fusion reactors to absorb microwave radiation in a controlled manner and with predictable power density. Therefore, a detailed knowledge of absorption properties of absorber coating materials used is necessary. Plasma-sprayed mixed oxide coatings are most commonly used in those applications where moderate power density is expected. In this paper, a plane wave absorption model is presented using refractive index and absorption coefficient as internal parameters and incidence angle, polarization, and layer thickness as external parameters. The model has been calculated assuming radiation of 170 GHz, as envisaged for the ITER research facility. Three atmospheric plasma-sprayed coating materials were considered in this work: titanium dioxide (TiO2), chromium oxide (Cr2O3), and a mixed aluminum-titanium oxide Al2O3-TiO2 (40/60). Theoretical results are compared with free wave measurements with two antennas. Different coating thicknesses have been prepared and measured in different polarization and incidence angles. Results are discussed regarding polarization, incidence angle, layer thickness, absorption coefficient, and refractive index.
  • Thumbnail Image
    ItemOpen Access
    Volatile lubricants injected through laser drilled micro holes enable efficiently hydrocarbon-free lubrication for deep drawing processes
    (2023) Reichle, Paul; Reichardt, Gerd; Henn, Manuel; Umlauf, Georg; Barz, Jakob; Riedmüller, Kim Rouven; Liewald, Mathias; Tovar, Günter E. M.
    In order to reduce the use of classic lubricants such as synthetic or mineral oils, emulsions or waxes in the deep drawing process, a new tribological system based on volatile lubricants was investigated. In this system, a volatile medium is injected under high pressure through laser drilled micro holes directly into the contact zone between the tool and the sheet metal and serves as a temporary lubricant. In order to investigate this tribological system under realistic conditions, strip drawing experiments with different volatile lubricants (air, nitrogen, carbon dioxide and argon) were performed on galvanized sheets. Therefore, a new generation of strip drawing tools was designed and numerically calculated for low elastic deformations to ensure a uniform contact pressure distribution over the entire friction contact area. To obtain a homogeneous distribution of the volatile lubricants, a number of micro holes with a depth of several millimeters were drilled into the hardened strip drawing jaws using ultrashort pulsed laser radiation. Taking into account the capabilities of this laser drilling technique in terms of size and shape of the micro holes, computational fluid dynamics simulations were performed to predict the flow behavior of the lubricant within the micro hole as well as the contact zone and were compared with observable effects in outflow tests. The chemical composition of the acting tribological layers was characterized by means of X-ray photoelectron spectroscopy and their changes during the deep drawing process were correlated with the lubricants used as well as the measured wear and friction values.