Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Stress-aware periodic test of interconnects
    (2022) Sadeghi-Kohan, Somayeh; Hellebrand, Sybille; Wunderlich, Hans-Joachim
    Safety-critical systems have to follow extremely high dependability requirements as specified in the standards for automotive, air, and space applications. The required high fault coverage at runtime is usually obtained by a combination of concurrent error detection or correction and periodic tests within rather short time intervals. The concurrent scheme ensures the integrity of computed results while the periodic test has to identify potential aging problems and to prevent any fault accumulation which may invalidate the concurrent error detection mechanism. Such periodic built-in self-test (BIST) schemes are already commercialized for memories and for random logic. The paper at hand extends this approach to interconnect structures. A BIST scheme is presented which targets interconnect defects before they will actually affect the system functionality at nominal speed. A BIST schedule is developed which significantly reduces aging caused by electromigration during the lifetime application of the periodic test.
  • Thumbnail Image
    ItemOpen Access
    A complete design-for-test scheme for reconfigurable scan networks
    (2023) Lylina, Natalia; Wang, Chih-Hao; Wunderlich, Hans-Joachim
    Reconfigurable Scan Networks (RSNs) are widely used for accessing instruments offline during debug, test and validation, as well as for performing system-level-test and online system health monitoring. The correct operation of RSNs is essential, and RSNs have to be thoroughly tested. However, due to their inherently sequential structure and complex control dependencies, large parts of RSNs have limited observability and controllability. As a result, certain faults at the interfaces to the instruments, control primitives and scan segments remain undetected by existing test methods. In the paper at hand, Design-for-test (DfT) schemes are developed to overcome the testability problems e.g. by resynthesizing the initial design. A DfT scheme for RSNs is presented, which allows detecting all single stuck-at-faults in RSNs by using existing test generation techniques. The developed scheme analyzes and ensures the testability of all parts of RSNs, which include scan segments, control primitives, and interfaces to the instruments. Therefore, the developed scheme is referred to as a complete DfT scheme . It allows for a test integration to cover multiple fault locations can with a single efficient test sequence and to reduce overall test cost.
  • Thumbnail Image
    ItemOpen Access
    Identifying resistive open defects in embedded cells under variations
    (2023) Najafi-Haghi, Zahra Paria; Wunderlich, Hans-Joachim
    Small Delay Faults (SDFs) due to weak defects and marginalities have to be distinguished from extra delays due to process variations, since they may form a reliability threat even if the resulting timing is within the specification. In this paper, it is shown that these faults can still be identified, even if the corresponding defect cell is deeply embedded into a combinational circuit and its observability is restricted. The results of a few delay tests at different voltages and frequencies serve as the input to machine learning procedures which can classify a circuit as marginal due to defects or just slow due to variations. Several machine learning techniques are investigated and compared with respect to accuracy, precision, and recall for different circuit sizes and defect scales. The classification strategies are powerful enough to sort out defective devices without a major impact on yield.