Universität Stuttgart

Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    ItemOpen Access
    Review on excess noise measurements of resistors
    (2023) Walter, Daniela; Bülau, André; Zimmermann, André
    Increasing demands for precision electronics require individual components such as resistors to be specified, as they can be the limiting factor within a circuit. To specify quality and long-term stability of resistors, noise measurements are a common method. This review briefly explains the theoretical background, introduces the noise index and provides an insight on how this index can be compared to other existing parameters. It then focuses on the different methods to measure excess noise in resistors. The respective advantages and disadvantages are pointed out in order to simplify the decision of which setup is suitable for a particular application. Each method is analyzed based on the integration of the device under test, components used, shielding considerations and signal processing. Furthermore, our results on the excess noise of resistors and resistor networks are presented using two different setups, one for very low noise measurements down to 20 µHz and one for broadband up to 100 kHz. The obtained data from these measurements are then compared to published data. Finally, first measurements on commercial strain gauges and inkjet-printed strain gauges are presented that show an additional 1/fα component compared to commercial resistors and resistor networks.
  • Thumbnail Image
    ItemOpen Access
    Bending setups for reliability investigation of flexible electronics
    (2021) Saleh, Rafat; Barth, Maximilian; Eberhardt, Wolfgang; Zimmermann, André
  • Thumbnail Image
    ItemOpen Access
    Dielectric properties of PEEK/PEI blends as substrate material in high-frequency circuit board applications
    (2024) Scherzer, Tim; Wolf, Marius; Werum, Kai; Ruckdäschel, Holger; Eberhardt, Wolfgang; Zimmermann, André
    Substrate materials for printed circuit boards must meet ever-increasing requirements to keep up with electronics technology development. Especially in the field of high-frequency applications such as radar and cellular broadcasting, low permittivity and the dielectric loss factor are key material parameters. In this work, the dielectric properties of a high-temperature, thermoplastic PEEK/PEI blend system are investigated at frequencies of 5 and 10 GHz under dried and ambient conditions. This material blend, modified with a suitable filler system, is capable of being used in the laser direct structuring (LDS) process. It is revealed that the degree of crystallinity of neat PEEK has a notable influence on the dielectric properties, as well as the PEEK phase structure in the blend system developed through annealing. This phenomenon can in turn be exploited to minimize permittivity values at 30 to 40 wt.-% PEI in the blend, even taking into account the water uptake present in thermoplastics. The dielectric loss follows a linear mixing rule over the blend range, which proved to be true also for PEEK/PEI LDS compounds.