Universität Stuttgart
Permanent URI for this communityhttps://elib.uni-stuttgart.de/handle/11682/1
Browse
98 results
Search Results
Item Open Access Counterion effects on the mesomorphic and electrochemical properties of guanidinium salts(2024) Ebert, Max; Lange, Alyna; Müller, Michael; Wuckert, Eugen; Gießelmann, Frank; Klamroth, Tillmann; Zens, Anna; Taubert, Andreas; Laschat, SabineIonic liquid crystals (ILCs) combine the ion mobility of ionic liquids with the order and self-assembly of thermotropic mesophases. To understand the role of the anion in ILCs, wedge-shaped arylguanidinium salts with tetradecyloxy side chains were chosen as benchmark systems and their liquid crystalline self-assembly in the bulk phase as well as their electrochemical behavior in solution were studied depending on the anion. Differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and X-ray diffraction (WAXS, SAXS) experiments revealed that for spherical anions, the phase width of the hexagonal columnar mesophase increased with the anion size, while for non-spherical anions, the trends were less clear cut. Depending on the anion, the ILCs showed different stability towards electrochemical oxidation and reduction with the most stable being the PF6 based compound. Cyclic voltammetry (CV) and density functional theory (DFT) calculations suggest a possible contribution of the guanidinium cation to the oxidation processes.Item Open Access Multistep reactions of molten nitrate salts and gas atmospheres(2024) Steinbrecher, Julian; Thess, André (Prof. Dr.)Dissertation zur Untersuchung der Stabilität von Nitratsalzschmelzen unter verschiedenen atmosphärischen Bedingungen und Temperaturen.Item Open Access Flux calculation for primary metabolism reveals changes in allocation of nitrogen to different amino acid families when photorespiratory activity changes(2024) Friedrichs, Nils; Shokouhi, Danial; Heyer, Arnd G.Photorespiration, caused by oxygenation of the enzyme Rubisco, is considered a wasteful process, because it reduces photosynthetic carbon gain, but it also supplies amino acids and is involved in amelioration of stress. Here, we show that a sudden increase in photorespiratory activity not only reduced carbon acquisition and production of sugars and starch, but also affected diurnal dynamics of amino acids not obviously involved in the process. Flux calculations based on diurnal metabolite profiles suggest that export of proline from leaves increases, while aspartate family members accumulate. An immense increase is observed for turnover in the cyclic reaction of glutamine synthetase/glutamine-oxoglutarate aminotransferase (GS/GOGAT), probably because of increased production of ammonium in photorespiration. The hpr1-1 mutant, defective in peroxisomal hydroxypyruvate reductase, shows substantial alterations in flux, leading to a shift from the oxoglutarate to the aspartate family of amino acids. This is coupled to a massive export of asparagine, which may serve in exchange for serine between shoot and root.Item Open Access Computational investigation of catalytic reaction mechanisms(2024) Heitkämper, Juliane; Kästner, Johannes (Prof. Dr.)Item Open Access On the thermal dimorphy of the strontium perrhenate Sr[ReO4]2(2024) Conrad, Maurice; Bette, Sebastian; Dinnebier, Robert E.; Schleid, ThomasHygroscopic single crystals of a new hexagonal high‐temperature modification of Sr[ReO4]2 were prepared from a melt of Sr[ReO4]2 ⋅ H2O and SrCl2 ⋅ 6 H2O. The structure analysis of the obtained crystals by X‐ray diffraction revealed that the title compound crystallizes in the ThCd[MoO4]3‐type structure with the hexagonal space group P63/m and the lattice parameters a=1023.81(7) pm and c=646.92(4) pm (c/a=0.632) for Z=2 in its quenchable high‐temperature form. Two crystallographically independent Sr2+ cations are coordinated by oxygen atoms forming either octahedra or tricapped trigonal prisms, whereas the Re7+ cations are found in the centers of discrete tetrahedral meta‐perrhenate units [ReO4]-. Temperature‐dependent in‐situ PXRD studies of dry powder samples of Sr[ReO4]2 exhibited its thermal dimorphy with a phase‐transition temperature at 500-550 °C from literature‐known m‐Sr[ReO4]2 into the newly discovered h‐Sr[ReO4]2 (hexagonal).Item Open Access Pyrido-anellierte 1,2,4,3-Triazaphospholene - ein neuer Zugang und erste Komplexe(2024) Richter, Ferdinand; Gudat, Dietrich (Prof. Dr.)Item Open Access Machine learning-driven investigation of the structure and dynamics of the BMIM-BF4 room temperature ionic liquid(2024) Zills, Fabian; Schäfer, Moritz René; Tovey, Samuel; Kästner, Johannes; Holm, ChristianRoom-temperature ionic liquids are an exciting group of materials with the potential to revolutionize energy storage. Due to their chemical structure and means of interaction, they are challenging to study computationally. Classical descriptions of their inter- and intra-molecular interactions require time intensive parametrization of force-fields which is prone to assumptions. While ab initio molecular dynamics approaches can capture all necessary interactions, they are too slow to achieve the time and length scales required. In this work, we take a step towards addressing these challenges by applying state-of-the-art machine-learned potentials to the simulation of 1-butyl-3-methylimidazolium tetrafluoroborate. We demonstrate a learning-on-the-fly procedure to train machine-learned potentials from single-point density functional theory calculations before performing production molecular dynamics simulations. Obtained structural and dynamical properties are in good agreement with computational and experimental references. Furthermore, our results show that hybrid machine-learned potentials can contribute to an improved prediction accuracy by mitigating the inherent shortsightedness of the models. Given that room-temperature ionic liquids necessitate long simulations to address their slow dynamics, achieving an optimal balance between accuracy and computational cost becomes imperative. To facilitate further investigation of these materials, we have made our IPSuite-based training and simulation workflow publicly accessible, enabling easy replication or adaptation to similar systems.Item Open Access Synthese von Stickstoffliganden mit Phosphonatgruppen zur Immobilisierung von Kupferkomplexen auf γ-Alumina für kupferkatalysierte Atomtransfer-Radikaladditionsreaktionen (ATRA)(2024) Maier, Sarah; Estes, Deven (Jun. Prof. Dr.)Diese Arbeit beschreibt die Synthese und Charakterisierung von stickstoffhaltigen Liganden mit Phosphonat-Ankergruppen, die Immobilisierung ihrer Kupferkomplexe auf oxidischen Trägermaterialien, sowie den Einsatz dieser immobilisierten Komplexe als Katalysatoren für Atomtransfer-Radikaladditionsreaktionen.Item Open Access Structural characterization of surface immobilized platinum hydrides by sensitivity-enhanced 195Pt solid state NMR spectroscopy and DFT calculations(2024) Atterberry, Benjamin A.; Wimmer, Erik J.; Klostermann, Sina; Frey, Wolfgang; Kästner, Johannes; Estes, Deven P.; Rossini, Aaron J.Supported single-site platinum hydride compounds are promising heterogeneous catalysts for organic transformations. Few methods exist to describe the structures of single-site Pt catalysts with atomic resolution because of their disordered structures and low Pt loadings. Here, we study the compounds formed when bis(tri-tert-butylphosphino)platinum, Pt(PtBu3)2, is supported on dehydroxylated SiO2 or SiO2-Al2O3. First, we obtain magic angle spinning (MAS) 1H, 31P and 195Pt ssNMR spectra of four model Pt phosphine compounds with oxidation states of 0 or +2 and coordination numbers between 2 and 4. These compounds are analogs of potential structures present in the supported compounds. MAS 195Pt ssNMR spectra were obtained using 31P{195Pt} sideband selective J-resolved and J-HMQC experiments. The measured 1H and 31P chemical shifts, 31P-195Pt J-couplings and 195Pt chemical shift (CS) tensors are shown to be diagnostic of oxidation state and coordination number. Room temperature 1H ssNMR spectra of Pt(PtBu3)2 supported on SiO2 or SiO2-Al2O3 show diagnostic hydride NMR signals, suggesting that Pt(PtBu3)2 undergoes oxidative addition, resulting in surface hydrides and Pt–oxygen bonds to the support surface. MAS dynamic nuclear polarization (DNP) enables 31P{195Pt} correlation NMR experiments on the supported compounds. These experiments enable the measurement of the 31P-195Pt J-coupling constants and 195Pt CS tensors. Combined NMR and DFT analyses suggest that the primary surface platinum species are [HPt(PtBu3)2OSi] on SiO2 and [HPt(PtBu3)2]+[Si-O--Al] on SiO2-Al2O3. The Pt-oxygen bond length is dependent on the support and estimated as 2.1-2.3 Å and 2.7-3.0 Å for SiO2 and SiO2-Al2O3, respectively.Item Open Access Syntheses and patterns of changes in structural parameters of the new quaternary tellurides EuRECuTe3 (RE = Ho, Tm, and Sc) : experiment and theory(2024) Ruseikina, Anna V.; Grigoriev, Maxim V.; Locke, Ralf J. C.; Chernyshev, Vladimir A.; Schleid, ThomasThe layered orthorhombic quaternary tellurides EuRECuTe3 (RE = Ho, Tm, Sc) with Cmcm symmetry were first synthesized. Single crystals of the compounds up to 500 μm in size were obtained by the halide-flux method at 1120 K from elements taken in a ratio of Eu/RE/Cu/Te = 1:1:1:3. In the series of compounds, the changes in lattice parameters were in the ranges a = 4.3129(3)-4.2341(3) Å, b = 14.3150(9)-14.1562(9) Å, c = 11.2312(7)-10.8698(7) Å, V = 693.40(8)-651.52(7) Å3. In the structures, the cations Eu2+, RE3+ (RE = Ho, Tm, Sc), and Cu+ occupied independent crystallographic positions. The structures were built with distorted copper tetrahedra forming infinite chains [CuTe4]7− and octahedra [RETe6]9- forming two-dimensional layers along the a-axis. These coordination polyhedra formed parallel two-dimensional layers CuRETe32-∞2. Between the layers, along the a-axis, chains of europium trigonal prisms [EuTe6]10- were located. Regularities in the variation of structural parameters and the degree of distortion of coordination polyhedra depending on the ionic radius of the rare-earth metal in the compounds EuRECuCh3 (RE = Ho, Er, Tm, Lu, Sc; Ch = S, Se, Te) were established. It is shown that with a decrease in the ionic radius ri(RE3+) in the compounds EuRECuTe3, the unit-cell volume, bond length d(RE-Te), distortion degree [CuTe4]7-, and crystallographic compression of layers [RECuTe3]2- decreased. The distortion degree of tetrahedral polyhedra [CuCh4]7-, as well as the structural parameters in europium rare-earth copper tellurides EuRECuTe3, were higher than in isostructural quaternary chalcogenides. Ab initio calculations of the crystalline structure, phonon spectrum, and elastic properties of compounds EuRECuTe3 (RE = Ho, Tm, and Sc) ere conducted. The types and wave numbers of fundamental modes were determined, and the involvement of ions in IR and Raman modes was assessed. The calculated data of the crystal structure correlated well with the experimental results.