Please use this identifier to cite or link to this item:
Authors: Albin, Thomas
Title: Machine learning and Monte Carlo based data analysis methods in cosmic dust research
Issue Date: 2019 Dissertation xx, 246
Abstract: This work applies miscellaneous algorithms from the fields Machine Learning and Computational Numerics on the research field Cosmic Dust. The task is to determine the scientific and technical potential of using different methods. Here, the methods are applied on two different projects: the meteor camera system Canary Island Long-Baseline Observatory (CILBO) and the Cassini in-situ dust telescope Cosmic-Dust-Analyzer (CDA).
Appears in Collections:06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Files in This Item:
File Description SizeFormat 
Albin_Dissertation_2019a.pdf30,91 MBAdobe PDFView/Open

Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.