Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-10627
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHose, Dominik-
dc.contributor.authorHanss, Michael-
dc.date.accessioned2019-11-21T16:07:40Z-
dc.date.available2019-11-21T16:07:40Z-
dc.date.issued2019de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-106448de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/10644-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-10627-
dc.description.abstractIn this paper, we show how a possibilistic description of uncertainty arises very naturally in statistical data analysis. In combination with recent results in inverse uncertainty propagation and the consistent aggregation of marginal possibility distributions, this estimation procedure enables a very general approach to possibilistic identification problems in the framework of imprecise probabilities, i.e. the non-parametric estimation of possibility distributions of uncertain variables from data with a clear interpretation.en
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc510de
dc.subject.ddc620de
dc.titleOn data-based estimation of possibility distributionsen
dc.typepreprintde
ubs.bemerkung.externPreprint submitted to Fuzzy Sets and Systems on October 14, 2019.de
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.institutInstitut für Technische und Numerische Mechanikde
ubs.publikation.noppnyesde
ubs.publikation.seiten16de
ubs.publikation.typPreprintde
Appears in Collections:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Files in This Item:
File Description SizeFormat 
HoseHanss2019b_OPUS.pdf912,98 kBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.