Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-10813
Authors: Wehrmann, Matthias
Berthelot, Charlotte
Billard, Patrick
Klebensberger, Janosch
Title: Rare earth element (REE)-dependent growth of Pseudomonas putida KT2440 relies on the ABC-transporter PedA1A2BC and is influenced by iron availability
Issue Date: 2019
metadata.ubs.publikation.typ: Zeitschriftenartikel
metadata.ubs.publikation.seiten: 14
metadata.ubs.publikation.source: Frontiers in microbiology 10 (2019), article 2494
URI: http://elib.uni-stuttgart.de/handle/11682/10830
http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-108302
http://dx.doi.org/10.18419/opus-10813
ISSN: 1664-302X
Abstract: In the soil-dwelling organism Pseudomonas putida KT2440, the rare earth element (REE)-utilizing, and pyrroloquinoline quinone (PQQ)-dependent ethanol dehydrogenase PedH is part of a periplasmic oxidation system that is vital for growth on various alcoholic volatiles. Production of PedH and its Ca2+-dependent counterpart PedE is inversely regulated in response to lanthanide (Ln3+) bioavailability, a mechanism termed the REE-switch. In the present study, we demonstrate that copper, zinc, and in particular, iron availability influences this regulation in a pyoverdine-independent manner by increasing the minimal Ln3+ concentration required for the REE-switch to occur by several orders of magnitude. A combined genetic and physiological approach reveals that an ABC-type transporter system encoded by the gene cluster pedA1A2BC is essential for efficient growth on 2-phenylethanol with low (nanomolar) Ln3+ concentrations. In the absence of pedA1A2BC, a ∼100-fold higher La3+-concentration is needed for PedH-dependent growth but not for the ability to repress growth based on PedE activity. From these results, we conclude that cytoplasmic uptake of lanthanides through PedA1A2BC is essential to facilitate REE-dependent growth on 2-phenylethanol under environmental conditions with poor REE bioavailability. Our data further suggest that the La3+/Fe2+/3+ ratio impacts the REE-switch through the mismetallation of putative La3+-binding proteins, such as the sensor histidine kinase PedS2, in the presence of high iron concentrations. As such, this study provides an example for the complexity of bacteria-metal interactions and highlights the importance of medium compositions when studying physiological traits in vitro in particular in regard to REE-dependent phenomena.
Appears in Collections:03 Fakultät Chemie

Files in This Item:
File Description SizeFormat 
Wehrmann et al 2019.pdf1,96 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.