Please use this identifier to cite or link to this item:
Authors: Praditia, Timothy
Walser, Thilo
Oladyshkin, Sergey
Nowak, Wolfgang
Title: Improving thermochemical energy storage dynamics forecast with physics-inspired neural network architecture
Issue Date: 2020 Zeitschriftenartikel 26 Energies 13 (2020), No. 3873
ISSN: 1996-1073
Abstract: Thermochemical Energy Storage (TCES), specifically the calcium oxide (CaO)/calcium hydroxide (Ca(OH)2) system is a promising energy storage technology with relatively high energy density and low cost. However, the existing models available to predict the system's internal states are computationally expensive. An accurate and real-time capable model is therefore still required to improve its operational control. In this work, we implement a Physics-Informed Neural Network (PINN) to predict the dynamics of the TCES internal state. Our proposed framework addresses three physical aspects to build the PINN: (1) we choose a Nonlinear Autoregressive Network with Exogeneous Inputs (NARX) with deeper recurrence to address the nonlinear latency; (2) we train the network in closed-loop to capture the long-term dynamics; and (3) we incorporate physical regularisation during its training, calculated based on discretized mole and energy balance equations. To train the network, we perform numerical simulations on an ensemble of system parameters to obtain synthetic data. Even though the suggested approach provides results with the error of 3.96 x 10^(-4) which is in the same range as the result without physical regularisation, it is superior compared to conventional Artificial Neural Network (ANN) strategies because it ensures physical plausibility of the predictions, even in a highly dynamic and nonlinear problem. Consequently, the suggested PINN can be further developed for more complicated analysis of the TCES system.
Appears in Collections:02 Fakultät Bau- und Umweltingenieurwissenschaften

Files in This Item:
File Description SizeFormat 
energies-13-03873.pdf1,87 MBAdobe PDFView/Open

Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.