Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-11144
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJoas, Sebastian-
dc.contributor.authorTovar, Günter E. M.-
dc.contributor.authorCelik, Oguz-
dc.contributor.authorBonten, Christian-
dc.contributor.authorSouthan, Alexander-
dc.date.accessioned2020-11-20T14:28:39Z-
dc.date.available2020-11-20T14:28:39Z-
dc.date.issued2018de
dc.identifier.issn2310-2861-
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/11161-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-111614de
dc.identifier.urihttp://dx.doi.org/10.18419/opus-11144-
dc.description.abstractHydrogels are an interesting class of materials used in extrusion-based 3D printing, e.g., for drug delivery or tissue engineering. However, new hydrogel formulations for 3D printing as well as a detailed understanding of crucial formulation properties for 3D printing are needed. In this contribution, hydrogels based on poly(ethylene glycol) diacrylate (PEG-DA) and the charged monomers 3-sulfopropyl acrylate and [2-(acryloyloxy)ethyl]trimethylammonium chloride are formulated for 3D printing, together with Poloxamer 407 (P407). Chemical curing of formulations with PEG-DA and up to 5% (w/w) of the charged monomers was possible without difficulty. Through careful examination of the rheological properties of the non-cured formulations, it was found that flow properties of formulations with a high P407 concentration of 22.5% (w/w) possessed yield stresses well above 100 Pa together with pronounced shear thinning behavior. Thus, those formulations could be processed by 3D printing, as demonstrated by the generation of pyramidal objects. Modelling of the flow profile during 3D printing suggests that a plug-like laminar flow is prevalent inside the printer capillary. Under such circumstances, fast recovery of a high vicosity after material deposition might not be necessary to guarantee shape fidelity because the majority of the 3D printed volume does not face any relevant shear stress during printing.en
dc.language.isoende
dc.relation.uridoi:10.3390/gels4030069de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc500de
dc.subject.ddc540de
dc.subject.ddc620de
dc.titleExtrusion-based 3D printing of poly(ethylene glycol) diacrylate hydrogels containing positively and negatively charged groupsen
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.institutInstitut für Grenzflächenverfahrenstechnik und Plasmatechnologiede
ubs.institutInstitut für Kunststofftechnikde
ubs.institutFraunhofer Institut für Grenzflächen- und Bioverfahrenstechnik (IGB)de
ubs.publikation.noppnyesde
ubs.publikation.seiten17de
ubs.publikation.sourceGels 4 (2018), No. 69de
ubs.publikation.typZeitschriftenartikelde
Appears in Collections:04 Fakultät Energie-, Verfahrens- und Biotechnik

Files in This Item:
File Description SizeFormat 
joas_2018.pdfArticle1,6 MBAdobe PDFView/Open
joas_2018_support.pdfSupporting information1,12 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.