Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-11278
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.advisorLutz, Eric (Prof. Dr.)-
dc.contributor.authorDenzler, Tobias-
dc.date.accessioned2021-02-10T11:06:59Z-
dc.date.available2021-02-10T11:06:59Z-
dc.date.issued2020de
dc.identifier.other1748004220-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-112957de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/11295-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-11278-
dc.description.abstractIn this work we study the effect of quantum and thermal fluctuations on the statistics of quantum heat engine performance parameters, like efficiency and power. We begin by deriving an explicit solution for the characteristic function of the heat distribution of a thermal quantum harmonic oscillator. We then derive a general framework based on the standard two-point-measurement scheme to compute the efficiency distribution of a quantum Otto cycle. We analyze the generic properties of this distribution for scale-invariant driving Hamiltonians which describe a large class of single-particle, many-body, and nonlinear systems. We find that the efficiency is deterministic and that its mean is equal to the macroscopic efficiency for adiabatic driving. We continue our research by studying the efficiency large deviation function of two exemplary quantum heat engines, the harmonic oscillator and the two-level Otto cycles. While the efficiency statistics follow the ’universal’ theory of Verley et al. [Nature Commun. 5, 4721 (2014)] for nonadiabatic driving, we find that the latter framework does not apply in the adiabatic regime. We can relate this unusual property to the perfect anticorrelation between work output and heat input that suppresses thermal as well as quantum fluctuations. We then probe our findings in an experimental NMR setup using spin-1/2 systems and find them to agree rather well with our theoretical predictions. Afterward, we move on to the finite-time quantum Carnot cycle and investigate its power fluctuations. In particular, we consider how level degeneracy and level number, two commonly found properties in quantum systems, influence the relative work fluctuations. We find that their optimal performance may surpass those of nondegenerate two-level engines or harmonic oscillator motors. Our results highlight that these parameters can be employed to realize high-performance, high-stability cyclic quantum heat engines.en
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc530de
dc.titleFluctuations and correlations of quantum heat enginesen
dc.typedoctoralThesisde
ubs.dateAccepted2020-11-06-
ubs.fakultaetMathematik und Physikde
ubs.institutInstitut für Theoretische Physik Ide
ubs.publikation.seitenv, 109de
ubs.publikation.typDissertationde
ubs.thesis.grantorMathematik und Physikde
Enthalten in den Sammlungen:08 Fakultät Mathematik und Physik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
main_for_library_a4.pdf6,38 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.