08 Fakultät Mathematik und Physik

Permanent URI for this collectionhttps://elib.uni-stuttgart.de/handle/11682/9

Browse

Search Results

Now showing 1 - 10 of 1180
  • Thumbnail Image
    ItemOpen Access
    Investigating superconductivity by tunneling spectroscopy using oxide heterostructures
    (2017) Fillis-Tsirakis, Evangelos; Mannhart, Jochen (Prof. Dr.)
  • Thumbnail Image
    ItemOpen Access
    Nonlinear optical microspectroscopy with few-cycle laser pulses
    (2017) Wan, Hui; Wrachtrup, Jörg (Prof. Dr.)
    Nonlinear optical (NLO) microscopy is a powerful tool in physics, chemistry, and material science it probes intrinsic optical properties of the sample without the need of labeling. In order to investigate the ultrafast processes in nonlinear materials with high spatial resolution, we need to combine both ultrashort pulses and techniques focusing them to the diffraction limit. Previously, few-cycle laser pulses have often been tightly focused using conventional microscope objectives. However, the propagation of an ultrashort pulse in optical materials, particularly in the glass of a high numerical aperture (N.A.) microscope objective, results in spatial and temporal distortions of the pulse electric field, which can severely affect its quality in the focus. By purely passive group delay dispersion (GDD) and third-order dispersion (TOD) management, in this thesis, we experimentally demonstrate in-focus diffraction-limited and bandwidth-limited few-cycle pulses by using high N.A. objectives. Based on these achievements, the performance of a novel few-cycle NLO microscope for both second-harmonic generation (SHG) imaging and microspectroscopy in the frequency- and time-domains was characterized. The inverse linear dependence of SHG intensity on the in-focus pulse duration was demonstrated down to 7.1 fs for the first time. The application of shorter in-focus pulses for the enhancement of SHG image contrast was successfully demonstrated on a single collagen (type-I) fibril as a biological model system for studying protein assemblies under physiological conditions. Beyond imaging, a collagen fibril has been found to act as a purely non-resonant χ(2) soft matter under the present excitation conditions, and its ratio of forward- to epi-detected SHG intensities allowed for the estimation of the fibril thickness, which corresponds well with atomic force microscopy (AFM) measurements. The ultrafast dephasing of the localized surface plasmon resonance (LSPR) in the metallic nanoparticles, that only occurs on a time scale of a few femtoseconds, has gained a lot of attraction in the field of nanoplasmonics. This thesis is the first systematic experimental demonstration of time-resolving ultrashort plasmon dephasing in single gold nanoparticles by using interferometric SHG spectroscopy with in-focus 7.3 fs excitation pulses in combination with linear scattering spectroscopy performed on the same nanoparticle. For nanorods, nanodisks, and nanorectangles, strong plasmon resonance enhanced SHG is observed, where the SHG intensity strongly depends on the spectral overlap between the LSPR band and the excitation laser spectrum. For single nanorods and nanorectangles, the polarization dependence of the SHG intensity was found to follow second-order dipole scattering, and the effect of size and shape on the LSPR properties was directly observed in the time-domain. Good agreement between experimental and simulated values of dephasing times and resonance wavelengths is obtained, which confirms that a common driven damped harmonic oscillator model for the LSPR in the nanoparticle can qualitatively explain both the linear scattering spectra in the frequency-domain and the SHG response in the time-domain. Resonance bands in linear transmission and scattering spectra have also been observed for nanoholes with sizes smaller than the wavelength of the incident light in a metal film, which are assigned to LSPR modes of the electric field distribution around the nanohole with qualitatively similar resonance properties as a nanoparticle. The polarization-resolved nonlinear optical properties of the single nanoholes with different shapes and symmetries were also reported. The objective of this thesis has been systematic SHG studies of the size effect in the LSPR of single nanoholes in metal films and of their ultrafast dephasing dynamics. Although, enhancement of both the forward- and epi-detected SHG emissions from single rectangular nanoholes are observed,however,no ultrafast dephasing dynamics of LSPRs in rectangular nanoholes could be time-resolved with our in-focus 7.3 fs excitation laser pulses, which indicates that contributions from LSPR enhanced SHG to the detected SHG signal are negligible. More work needs to be done in order to overcome the current experimental limitations. However, in this thesis, the polarization dependence of the forward- and epi-detected SHG intensity from the single rectangular nanohole was found to follow that of a second-order dipole pattern. While the SHG dipole pattern observed for rectangular nanoparticles is oriented parallel to its long-axis, the SHG dipole pattern of its complementary rectangular nanohole is oriented perpendicular to its long-axis. This observation represents the first experimental demonstration of Babinet’s principle in second-order nonlinear scattering of a single rectangular nanohole in a gold film.
  • Thumbnail Image
    ItemOpen Access
    Energy gap reduction in superconducting tin films by quasiparticle injection
    (1977) Fuchs, Jürgen; Epperlein, Peter W.; Welte, Michael; Eisenmenger, Wolfgang
    In Sn-/-Sn-/-Pb tunneling structures the energy gap ΔSn of Sn is reduced by quasiparticle injection via single-particle tunneling between the Sn films. ΔSn as function of the quasiparticle density is probed by the Pb contact and found in agreement with the theory of Owen and Scalapino. An instability of the energy gap of Sn is observed at the critical gap reduction ratio predicted by this theory for a first-order phase transition.
  • Thumbnail Image
    ItemOpen Access
    Exploring the growth of refractory metal and sapphire films by thermal laser epitaxy
    (2024) Majer, Lena N.; Mannhart, Jochen (Prof. Dr.)
  • Thumbnail Image
    ItemOpen Access
    Microscopic calculation of line tensions
    (2008) Merath, Rolf-Jürgen Christian; Dietrich, Siegfried (Prof. Dr.)
    In this work the line tension has been determinded with molecular resolution, which in this context marks the forefront of research. A semi-microscopic line tension theory based on the sharp-kink approximation has been further developed. The sharp-kink results concerning wetting and line tension behavior deviate considerably from the fully microscopic results. A hybrid line tension theory has been introduced, which employs an improved effective interface potential for the SK line tension calculation. For most of the studied cases the results from this hybrid method describe the fully microscopic line tension values semi-quantitatively. However, for a tailored system with relatively strong spatial variations of the substrate potential and of the solid-liquid interfacial density the hybrid method fails and does not predict the correct order of magnitude of the line tension values. Hence in general the fully microscopic approach is required, if one is interested in quantitatively reliable line tension values or/and if the validity of the hybrid method for the considered system has not been checked. The calculation of the line tension of a liquid wedge is an important contribution for understanding the shape of very small droplets (below the micrometer range). Furthermore a proposal is given, how axisymmetric sessile droplets can be addressed efficiently within DFT.
  • Thumbnail Image
    ItemOpen Access
    Dominant dimensions of finite dimensional algebras
    (2012) Abrar, Muhammad; König, Steffen (Prof. Dr. rer. nat.)
    We study the dominant dimensions of three classes of finite dimensional algebras, namely hereditary algebras, quotient algebras of trees and serial algebras. We see that a branching vertex plays a key role to establish that the dominant dimension (dom.dim) of hereditary algebras (quivers) is at most one. We define arms of a tree and split trees into two classes: trees without arms and trees with arms. Like hereditary algebras, it turns out that the dominant dimension of the quotient algebras of trees can not exceed one. For serial algebras A associated to linearly oriented quiver with n vertices, we give lower and upper bounds of dom.dimA, and show that the bounds are optimal. It is also shown that some of the algebras A satisfy the conditions in the higher dimensional version of the Auslander's correspondence. Further we consider serial algebras corresponding to one-oriented-cycle quiver Q with n vertices, and give optimal bounds for a special subclass of these algebras. We conjecture that for any non self-injective quotient algebra A of Q dom.dimA is at most 2n-3, where the number of vertices n is bigger than 2.. Finally, we construct few examples of algebras having large (finite) dominant dimensions.
  • Thumbnail Image
    ItemOpen Access
    Reflection of high-frequency phonons at silicon-solid interfaces
    (1981) Marx, Dieter; Eisenmenger, Wolfgang
    In reflection experiments with phonons of frequencies above 280 GHz propagating along (110) directions we observed large deviations from the acoustic mismatch theory for silicon-metal, silicon-condensed gas, and silicon-liquid helium interfaces.
  • Thumbnail Image
    ItemOpen Access
    Epitaxy and scanning tunneling microscopy image contrast of copper-phthalocyanine on graphite and MoS2
    (1994) Ludwig, Christoph; Strohmaier, Rainer; Petersen, Jörg; Gompf, Bruno; Eisenmenger, Wolfgang
    Monolayers of copper–phthalocyanine (Cu–Pc) on highly oriented pyrolytic graphite (HOPG) and MoS2 prepared by organic molecular beam epitaxy have been investigated by scanning tunneling microscopy. On both substrates there exist well defined preparation conditions leading to ordered two-dimensional arrays of flat lying molecules. On HOPG they form a close-packed structure with a nearly quadratic unit cell, whereas on MoS2 we found two phases, one close-packed and one rowlike phase. This rowlike phase can be explained by a long range interaction due to an adsorbate induced superstructure of the substrate, which also can be seen in the scanning tunneling microscopy images. In images with submolecular resolution, the molecules appear different on the two substrates. On MoS2 they look like a four-leaved clover, on graphite they show a more detailed inner structure.
  • Thumbnail Image
    ItemOpen Access
    Self-organized structures and excitations in dipolar quantum fluids
    (2024) Hertkorn, Jens; Pfau, Tilman (Prof. Dr.)
    Quantum many-body phenomena at a macroscopic scale, such as superfluidity and superconductivity, are rooted in the interplay between microscopic particles, governed by the laws of quantum mechanics. Exploring how this interplay leads to quantum behavior at a large scale allows us to gain a deeper understanding of nature and to discover new quantum phases. An elusive quantum phase in which the frictionless flow of superfluids and the crystal structure of solids coexists - the supersolid - was recently realized with quantum droplets in dipolar Bose-Einstein condensates. In this thesis we investigate self-organized structures, their formation mechanism, and excitations in dipolar quantum fluids created from such Bose-Einstein condensates. We show that the supersolid formation mechanism is driven by density fluctuations due to low-energy roton excitations, leading to a crystal structure of quantum droplets that are immersed in a superfluid background. These roton excitations split into a Goldstone mode and a Higgs amplitude mode, associated to the broken translational symmetry in the supersolid. We investigate the symmetry breaking of dipolar quantum fluids in a range of confinement geometries and establish a comprehensive description of elementary excitations across the superfluid to supersolid droplet phase transition. The droplets are stabilized by an interplay between interactions and the presence of quantum fluctuations. We show how this interplay can be used to find regimes where droplets are immersed in a high superfluid background, allowing for frictionless flow throughout the crystal. Moreover we show that towards higher densities beyond the quantum droplet phase, this interplay leads to several new self-organized structures in the phase diagram of dipolar quantum fluids. We theoretically predict new supersolid honeycomb, amorphous labyrinth, and other phases in oblate dipolar quantum fluids. Finally, we present a new experimental setup for the exploration of self-organized phases in dipolar quantum fluids and which also lays the foundation for the implementation of a quantum gas microscope. The results of this thesis present a complete framework for understanding and creating exotic phases in dipolar quantum fluids. The versatile structure formation, governed by a competition of controllable interactions and the presence of quantum fluctuations, positions dipolar quantum fluids as a model system for exploring self-organized equilibrium in weakly-interacting quantum many-body systems.
  • Thumbnail Image
    ItemOpen Access
    Adaptive higher order discontinuous Galerkin methods for porous-media multi-phase flow with strong heterogeneities
    (2018) Kane, Birane; Siebert, Kunibert (Prof. Dr.)
    In this thesis, we develop, analyze, and implement adaptive discontinuous Galerkin (DG) finite element solvers for the efficient simulation of porous-media flow problems. We consider 2d and 3d incompressible, immiscible, two-phase flow in a possibly strongly heterogeneous and anisotropic porous medium. Discontinuous capillarypressure functions and gravity effects are taken into account. The system is written in terms of a phase-pressure/phase-saturation formulation. First and second order Adams-Moulton time discretization methods are combined with various interior penalty DG discretizations in space, such as the symmetric interior penalty Galerkin (SIPG), the nonsymmetric interior penalty Galerkin (NIPG) and the incomplete interior penalty Galerkin (IIPG). These fully implicit space time discretizations lead to fully coupled nonlinear systems requiring to build a Jacobian matrix at each time step and in each iteration of a Newton-Raphson method. We provide a stability estimate of the saturation and the pressure with respect to initial and boundary data. We also derive a-priori error estimates with respect to the L2(H1) norm for the pressure and the L∞(L2)∩L2(H1) norm for the saturation. Moving on to adaptivity, we implement different strategies allowing for a simultaneous variation of the element sizes, the local polynomial degrees and the time step size. These approaches allow to increase the local polynomial degree when the solution is estimated to be smooth and refine locally the mesh otherwise. They also grant more flexibility with respect to the time step size without impeding the convergence of the method. The aforementioned adaptive algorithms are applied in series of homogeneous, heterogeneous and anisotropic test cases. To our knowledge, this is the first time the concept of local hp-adaptivity is incorporated in the study of 2d and 3d incompressible, immiscible, two-phase flow problems. Delving into the issue of efficient linear solvers for the fully-coupled fully-implicit formulations, we implement a constrained pressure residual (CPR) two-stage preconditioner that exploits the algebraic properties of the Jacobian matrices of the systems. Furthermore, we provide an open-source DG two-phase flow simulator, based on the software framework DUNE, accompanied by a set of programs including instructions on how to compile and run them.