Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-11345
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorZhu, Li-Fang-
dc.contributor.authorGrabowski, Blazej-
dc.contributor.authorNeugebauer, Jörg-
dc.date.accessioned2021-03-18T10:32:35Z-
dc.date.available2021-03-18T10:32:35Z-
dc.date.issued2017de
dc.identifier.issn2469-9950-
dc.identifier.issn2469-9969-
dc.identifier.other1818551071-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-113620de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/11362-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-11345-
dc.description.abstractApplying thermodynamic integration within an ab initio-based free-energy approach is a state-of-the-art method to calculate melting points of materials. However, the high computational cost and the reliance on a good reference system for calculating the liquid free energy have so far hindered a general application. To overcome these challenges, we propose the two-optimized references thermodynamic integration using Langevin dynamics (TOR-TILD) method in this work by extending the two-stage upsampled thermodynamic integration using Langevin dynamics (TU-TILD) method, which has been originally developed to obtain anharmonic free energies of solids, to the calculation of liquid free energies. The core idea of TOR-TILD is to fit two empirical potentials to the energies from density functional theory based molecular dynamics runs for the solid and the liquid phase and to use these potentials as reference systems for thermodynamic integration. Because the empirical potentials closely reproduce the ab initio system in the relevant part of the phase space the convergence of the thermodynamic integration is very rapid. Therefore, the proposed approach improves significantly the computational efficiency while preserving the required accuracy. As a test case, we apply TOR-TILD to fcc Cu computing not only the melting point but various other melting properties, such as the entropy and enthalpy of fusion and the volume change upon melting. The generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional and the local-density approximation (LDA) are used. Using both functionals gives a reliable ab initio confidence interval for the melting point, the enthalpy of fusion, and entropy of fusion.en
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/639211de
dc.relation.uridoi:10.1103/PhysRevB.96.224202de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc530de
dc.titleEfficient approach to compute melting properties fully from ab initio with application to Cuen
dc.typearticlede
ubs.fakultaetChemiede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Materialwissenschaftde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten12de
ubs.publikation.sourcePhysical Review, B 96 (2017), 224202de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:03 Fakultät Chemie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
PhysRevB.96.224202.pdf1,09 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.