Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-11347
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorZhang, Xi-
dc.contributor.authorGrabowski, Blazej-
dc.contributor.authorKörmann, Fritz-
dc.contributor.authorFreysoldt, Christoph-
dc.contributor.authorNeugebauer, Jörg-
dc.date.accessioned2021-03-18T10:33:47Z-
dc.date.available2021-03-18T10:33:47Z-
dc.date.issued2017de
dc.identifier.issn2469-9950-
dc.identifier.issn2469-9969-
dc.identifier.other1816738182-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-113648de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/11364-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-11347-
dc.description.abstractFree energies of bulk materials are nowadays routinely computed by density functional theory. In particular for metals, electronic excitations can significantly contribute to the free energy. For an ideal static lattice, this contribution can be obtained at low computational cost, e.g., from the electronic density of states derived at T = 0 K or by utilizing the Sommerfeld approximation. The error introduced by these approximations at elevated temperatures is rarely known. The error arising from the ideal lattice approximation is likewise unexplored but computationally much more challenging to overcome. In order to shed light on these issues we have computed the electronic free energies for all 3d, 4d, and 5d transition elements on the ideal lattices of the bcc, fcc, and hcp structures using finite-temperature density-functional theory. For a subset of elements we have explored the impact of explicit thermal vibrations on the electronic free energies by using ab initio molecular dynamics simulations. We provide an analysis of the observed chemical trends in terms of the electronic density of states and the canonical d band model and quantify the errors in the approximate methods. The electronic contribution to the heat capacities and the corresponding errors due to the different approximations are studied as well.en
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/639211de
dc.relation.uridoi:10.1103/PhysRevB.95.165126de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc530de
dc.titleAccurate electronic free energies of the 3d, 4d, and 5d transition metals at high temperaturesen
dc.typearticlede
ubs.fakultaetChemiede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Materialwissenschaftde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten13de
ubs.publikation.sourcePhysical Review, B 95 (2017), 165126de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:03 Fakultät Chemie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
PhysRevB.95.165126.pdf3,11 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.