Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12068
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorFink, Daniel-
dc.date.accessioned2022-04-05T15:42:13Z-
dc.date.available2022-04-05T15:42:13Z-
dc.date.issued2022de
dc.identifier.other1799522407-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-120853de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12085-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12068-
dc.description.abstractSimulating future outcomes based on past observations is a key task in predictive modeling and has found application in many areas ranging from neuroscience to the modeling of financial markets. The classical provably optimal models for stationary stochastic processes are so-called ϵ-machines, which have the structure of a unifilar hidden Markov model and offer a minimal set of internal states. However, these models are not optimal in the quantum setting, i.e., when the models have access to quantum devices. The methods proposed so far for quantum predictive models rely either on the knowledge of an ϵ-machine, or on learning a classical representation thereof, which is memory inefficient since it requires exponentially many resources in the Markov order. Meanwhile, variational quantum algorithms (VQAs) are a promising approach for using near-term quantum devices to tackle problems arising from many different areas in science and technology. Within this work, we propose a VQA for learning quantum predictive models directly from data on a quantum computer. The learning algorithm is inspired by recent developments in the area of implicit generative modeling, where a kernel-based two-sample-test, called maximum mean discrepancy (MMD), is used as a cost function. A major challenge of learning predictive models is to ensure that arbitrarily many time steps can be simulated accurately. For this purpose, we propose a quantum post-processing step that yields a regularization term for the cost function and penalizes models with a large set of internal states. As a proof of concept, we apply the algorithm to a stationary stochastic process and show that the regularization leads to a small set of internal states and a constantly good simulation performance over multiple future time steps, measured in the Kullback-Leibler divergence and the total variation distance.en
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.subject.ddc510de
dc.subject.ddc530de
dc.titleSimulating stochastic processes with variational quantum circuitsen
dc.typemasterThesisde
ubs.fakultaetMathematik und Physikde
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Computerphysikde
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.publikation.seiten70de
ubs.publikation.typAbschlussarbeit (Master)de
Enthalten in den Sammlungen:15 Fakultätsübergreifend / Sonstige Einrichtung

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
2022_02_22_Master_Thesis_Daniel_Fink.pdf1,7 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.