Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12126
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorSchneider, Yanling-
dc.contributor.authorRapp, Dennis-Michael-
dc.contributor.authorYang, Yifang-
dc.contributor.authorWasserbäch, Werner-
dc.contributor.authorSchmauder, Siegfried-
dc.date.accessioned2022-05-04T12:42:36Z-
dc.date.available2022-05-04T12:42:36Z-
dc.date.issued2022de
dc.identifier.issn1996-1944-
dc.identifier.other1801029792-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-121430de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12143-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12126-
dc.description.abstractThe current work numerically investigates commercial polycrystalline Ag/17vol.%SnO2 composite tensile deformation behavior with available experimental data. Such composites are useful for electric contacts and have a highly textured initial material status after hot extrusion. Experimentally, the initial sharp fiber texture and the number of Sigma3-twins were reduced due to tensile loading. The local inhomogeneous distribution of hardness and Young’s modulus gradually decreased from nanoindentation tests, approaching global homogeneity. Many-scale simulations, including micro-macro simultaneous finite element (FE) and discrete dislocation dynamics (DDD) simulations, were performed. Deformation mechanisms on the microscale are fundamental since they link those on the macro- and nanoscale. This work emphasizes micromechanical deformation behavior. Such FE calculations applied with crystal plasticity can predict local feature evolutions in detail, such as texture, morphology, and stress flow in individual grains. To avoid the negative influence of boundary conditions (BCs) on the result accuracy, BCs are given on the macrostructure, i.e., the microstructure is free of BCs. The particular type of 3D simulation, axisymmetry, is preferred, in which a 2D real microstructural cutout with 513 Ag grains is applied. From FE results, Sigma3-twins strongly rotated to the loading direction (twins disappear), which, possibly, caused other grains to rotate away from the loading direction. The DDD simulation treats the dislocations as discrete lines and can predict the resolved shear stress (RSS) inside one grain with dependence on various features as dislocation density and lattice orientation. The RSS can act as the link between the FE and DDD predictions.en
dc.language.isoende
dc.relation.uridoi:10.3390/ ma15082852de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc620de
dc.titleMany-scale investigations of deformation behavior of polycrystalline composites: II - micro-macro simultaneous FE and discrete dislocation dynamics simulationen
dc.typearticlede
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetZentrale Einrichtungende
ubs.institutInstitut für Materialprüfung, Werkstoffkunde und Festigkeitslehrede
ubs.institutVisualisierungsinstitut der Universität Stuttgartde
ubs.publikation.seiten26de
ubs.publikation.sourceMaterials 15 (2022), No. 2852de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
N018-AgSnO2-FE-DDD-materials.pdf5,96 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.