Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12311
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorBender, Johannes-
dc.contributor.authorMayerhöfer, Britta-
dc.contributor.authorTrinke, Patrick-
dc.contributor.authorBensmann, Boris-
dc.contributor.authorHanke-Rauschenbach, Richard-
dc.contributor.authorKrajinovic, Katica-
dc.contributor.authorThiele, Simon-
dc.contributor.authorKerres, Jochen-
dc.date.accessioned2022-08-25T12:51:57Z-
dc.date.available2022-08-25T12:51:57Z-
dc.date.issued2021-
dc.identifier.issn2073-4360-
dc.identifier.other1822673941-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-123308de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12330-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12311-
dc.description.abstractAs an alternative to common perfluorosulfonic acid-based polyelectrolytes, we present the synthesis and characterization of proton exchange membranes based on two different concepts: (i) Covalently bound multiblock-co-ionomers with a nanophase-separated structure exhibit tunable properties depending on hydrophilic and hydrophobic components’ ratios. Here, the blocks were synthesized individually via step-growth polycondensation from either partially fluorinated or sulfonated aromatic monomers. (ii) Ionically crosslinked blend membranes of partially fluorinated polybenzimidazole and pyridine side-chain-modified polysulfones combine the hydrophilic component’s high proton conductivities with high mechanical stability established by the hydrophobic components. In addition to the polymer synthesis, membrane preparation, and thorough characterization of the obtained materials, hydrogen permeability is determined using linear sweep voltammetry. Furthermore, initial in situ tests in a PEM electrolysis cell show promising cell performance, which can be increased by optimizing electrodes with regard to binders for the respective membrane material.en
dc.language.isoende
dc.relation.uridoi:10.3390/polym13203467de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleH+-conducting aromatic multiblock copolymer and blend membranes and their application in PEM electrolysisen
dc.typearticlede
dc.date.updated2021-11-05T00:17:09Z-
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Chemische Verfahrenstechnikde
ubs.publikation.seiten19de
ubs.publikation.sourcePolymers 13 (2021), No. 3467de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
polymers-13-03467-v3.pdf4,39 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons