Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12315
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorGöhler, Georg-
dc.contributor.authorKlingler, Anna-Lena-
dc.contributor.authorKlausmann, Florian-
dc.contributor.authorSpath, Dieter-
dc.date.accessioned2022-08-25T15:31:17Z-
dc.date.available2022-08-25T15:31:17Z-
dc.date.issued2021-
dc.identifier.issn1996-1073-
dc.identifier.other1822672562-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-123346de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12334-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12315-
dc.description.abstractIntelligent integration of decentralised energy resources, local storage and direct consumption are key factors in achieving the transformation of the energy system. In this study, we present a modular simulation concept that allows the planning of decentralised energy systems for buildings and building blocks. In comparison to related studies, we use a simulation model for energy planning with a high time-resolution from the perspective of the energy system planner. In this study, we address the challenges of the grid connection in combination with an increasing number of electric vehicles (EV) in the future. The here developed model is applied for an innovative building block in Germany with a photovoltaic (PV) system, a combined heat and power (CHP) unit, battery storage and electric vehicles. The results of the simulation are validated with real-life data to illustrate the practical relevance and show that our simulation model is able to support the planning of decentralised energy systems. We demonstrate that without anticipating future electric vehicle charging, the system configurations could be sub-optimal if complete self-sufficiency is the objective: in our case study, the rate of self-sufficiency of the net-zero energy building will be lowered from 100% to 91% if considering electric vehicles. Furthermore, our simulation shows that a peak minimising operation strategy with a battery can prevent grid overloads caused by EV charging in the future. Simulating different battery operation strategies can further help to implement the most useful strategy, without interruption of the current operation.en
dc.language.isoende
dc.relation.uridoi:10.3390/en14216874de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleIntegrated modelling of decentralised energy supply in combination with electric vehicle charging in a real-life case studyen
dc.typearticlede
dc.date.updated2021-11-04T23:50:03Z-
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Arbeitswissenschaft und Technologiemanagementde
ubs.institutFraunhofer Institut für Arbeitswirtschaft und Organisation (IAO)de
ubs.publikation.seiten19de
ubs.publikation.sourceEnergies 14 (2021), No. 6874de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
energies-14-06874-v2.pdf3,24 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons