Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12345
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorKrüger, Friederike-
dc.contributor.authorThierer, Rebecca-
dc.contributor.authorTahouni, Yasaman-
dc.contributor.authorSachse, Renate-
dc.contributor.authorWood, Dylan-
dc.contributor.authorMenges, Achim-
dc.contributor.authorBischoff, Manfred-
dc.contributor.authorRühe, Jürgen-
dc.date.accessioned2022-08-25T15:31:24Z-
dc.date.available2022-08-25T15:31:24Z-
dc.date.issued2021-
dc.identifier.issn2313-7673-
dc.identifier.other1822518016-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-123649de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12364-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12345-
dc.description.abstract(1) Significance of geometry for bio-inspired hygroscopically actuated bilayer structures is well studied and can be used to fine-tune curvatures in many existent material systems. We developed a material design space to find new material combinations that takes into account unequal effective widths of the layers, as commonly used in fused filament fabrication, and deflections under self-weight. (2) For this purpose, we adapted Timoshenko’s model for the curvature of bilayer strips and used an established hygromorphic 4D-printed bilayer system to validate its ability to predict curvatures in various experiments. (3) The combination of curvature evaluation with simple, linear beam deflection calculations leads to an analytical solution space to study influences of Young’s moduli, swelling strains and densities on deflection under self-weight and curvature under hygroscopic swelling. It shows that the choice of the ratio of Young’s moduli can be crucial for achieving a solution that is stable against production errors. (4) Under the assumption of linear material behavior, the presented development of a material design space allows selection or design of a suited material combination for application-specific, bio-inspired bilayer systems with unequal layer widths.en
dc.language.isoende
dc.relation.uridoi:10.3390/biomimetics6040058de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc720de
dc.titleDevelopment of a material design space for 4D-printed bio-inspired hygroscopically actuated bilayer structures with unequal effective layer widthsen
dc.typearticlede
dc.date.updated2021-11-04T20:59:48Z-
ubs.fakultaetArchitektur und Stadtplanungde
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.institutInstitut für Computerbasiertes Entwerfen und Baufertigungde
ubs.institutInstitut für Baustatik und Baudynamikde
ubs.institutStuttgart Research Center for Architecture: Integrative Design and Adaptive Building (ArchIDA)de
ubs.publikation.seiten15de
ubs.publikation.sourceBiomimetics 6 (2021), No. 58de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
biomimetics-06-00058-v2.pdf2,98 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons