Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12515
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorMinden, Steven-
dc.contributor.authorAniolek, Maria-
dc.contributor.authorSarkizi Shams Hajian, Christopher-
dc.contributor.authorTeleki, Attila-
dc.contributor.authorZerrer, Tobias-
dc.contributor.authorDelvigne, Frank-
dc.contributor.authorvan Gulik, Walter-
dc.contributor.authorDeshmukh, Amit-
dc.contributor.authorNoorman, Henk-
dc.contributor.authorTakors, Ralf-
dc.date.accessioned2022-11-09T12:41:19Z-
dc.date.available2022-11-09T12:41:19Z-
dc.date.issued2022-
dc.identifier.issn2218-1989-
dc.identifier.other1823509452-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-125348de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12534-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12515-
dc.description.abstractCarbon limitation is a common feeding strategy in bioprocesses to enable an efficient microbiological conversion of a substrate to a product. However, industrial settings inherently promote mixing insufficiencies, creating zones of famine conditions. Cells frequently traveling through such regions repeatedly experience substrate shortages and respond individually but often with a deteriorated production performance. A priori knowledge of the expected strain performance would enable targeted strain, process, and bioreactor engineering for minimizing performance loss. Today, computational fluid dynamics (CFD) coupled to data-driven kinetic models are a promising route for the in silico investigation of the impact of the dynamic environment in the large-scale bioreactor on microbial performance. However, profound wet-lab datasets are needed to cover relevant perturbations on realistic time scales. As a pioneering study, we quantified intracellular metabolome dynamics of Saccharomyces cerevisiae following an industrially relevant famine perturbation. Stimulus-response experiments were operated as chemostats with an intermittent feed and high-frequency sampling. Our results reveal that even mild glucose gradients in the range of 100 μmol·L-1 impose significant perturbations in adapted and non-adapted yeast cells, altering energy and redox homeostasis. Apparently, yeast sacrifices catabolic reduction charges for the sake of anabolic persistence under acute carbon starvation conditions. After repeated exposure to famine conditions, adapted cells show 2.7% increased maintenance demands.en
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/722361de
dc.relation.uridoi:10.3390/metabo12030263de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc570de
dc.titleMonitoring intracellular metabolite dynamics in Saccharomyces cerevisiae during industrially relevant famine stimulien
dc.typearticlede
dc.date.updated2022-04-08T13:56:05Z-
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Bioverfahrenstechnikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten24de
ubs.publikation.sourceMetabolites 12 (2022), No. 263de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
metabolites-12-00263-v2.pdf2,53 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons