Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12646
Autor(en): Kousik, Shravan
Sipp, Diane
Abitaev, Karina
Li, Yawen
Sottmann, Thomas
Koynov, Kaloian
Atanasova, Petia
Titel: From macro to mesoporous ZnO inverse opals : synthesis, characterization and tracer diffusion properties
Erscheinungsdatum: 2021
Dokumentart: Zeitschriftenartikel
Seiten: 18
Erschienen in: Nanomaterials 11 (2021), No. 196
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-126659
http://elib.uni-stuttgart.de/handle/11682/12665
http://dx.doi.org/10.18419/opus-12646
ISSN: 2079-4991
Zusammenfassung: Oxide inverse opals (IOs) with their high surface area and open porosity are promising candidates for catalyst support applications. Supports with confined mesoporous domains are of added value to heterogeneous catalysis. However, the fabrication of IOs with mesoporous or sub-macroporous voids (<100 nm) continues to be a challenge, and the diffusion of tracers in quasi-mesoporous IOs is yet to be adequately studied. In order to address these two problems, we synthesized ZnO IOs films with tunable pore sizes using chemical bath deposition and template-based approach. By decreasing the size of polystyrene (PS) template particles towards the mesoporous range, ZnO IOs with 50 nm-sized pores and open porosity were synthesized. The effect of the template-removal method on the pore geometry (spherical vs. gyroidal) was studied. The infiltration depth in the template was determined, and the factors influencing infiltration were assessed. The crystallinity and photonic stop-band of the IOs were studied using X-Ray diffraction and UV-Vis, respectively. The infiltration of tracer molecules (Alexa Fluor 488) in multilayered quasi-mesoporous ZnO IOs was confirmed via confocal laser scanning microscopy, while fluorescence correlation spectroscopy analysis revealed two distinct diffusion times in IOs assigned to diffusion through the pores (fast) and adsorption on the pore walls (slow).
Enthalten in den Sammlungen:03 Fakultät Chemie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
nanomaterials-11-00196-v2.pdf4,53 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons