Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-12661
Authors: Panin, Sergey
Vlasov, Ilya
Moiseenko, Dmitry
Maksimov, Pavel
Maruschak, Pavlo
Yakovlev, Alexander
Gomorova, Julia
Mishin, Ivan
Schmauder, Siegfried
Title: Increasing low-temperature toughness of 09Mn2Si steel through lamellar structuring by helical rolling
Issue Date: 2021
metadata.ubs.publikation.typ: Zeitschriftenartikel
metadata.ubs.publikation.seiten: 28
metadata.ubs.publikation.source: Metals 11 (2021), No. 352
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-126805
http://elib.uni-stuttgart.de/handle/11682/12680
http://dx.doi.org/10.18419/opus-12661
ISSN: 2075-4701
Abstract: The aim of the paper was to investigate the helical rolling parameters (a number of passes) for the microstructural modification and the low-temperature impact toughness improvement of the 09Mn2Si High Strength Low-Alloyed (HSLA) steel. In order to achieve this purpose, work spent to crack initiation and propagation was analyzed and compared with patterns of fracture surfaces. The microstructure and impact toughness values were presented in the temperature range from +20 to -70°C. Also, the fracture mechanisms in individual regions on the fracture surfaces were discussed. In addition, a methodology for computer simulation of the process was developed and implemented within the framework of the excitable cellular automata method and its integration with the kinetic theory of fracture. Finally, a theoretical analysis of the effect of grain shapes and orientations on the strain response patterns of a certain meso-volume simulating the material after the helical rolling was carried out.
Appears in Collections:04 Fakultät Energie-, Verfahrens- und Biotechnik

Files in This Item:
File Description SizeFormat 
metals-11-00352-v2.pdf10,34 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons