Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-12872
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorXu, Xiang-
dc.contributor.authorBinkele, Peter-
dc.contributor.authorVerestek, Wolfgang-
dc.contributor.authorSchmauder, Siegfried-
dc.date.accessioned2023-03-30T12:12:33Z-
dc.date.available2023-03-30T12:12:33Z-
dc.date.issued2021-
dc.identifier.issn1420-3049-
dc.identifier.other1841895458-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-128916de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/12891-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-12872-
dc.description.abstractAs Nickel (Ni) is the base of important Ni-based superalloys for high-temperature applications, it is important to determine the creep behavior of its nano-polycrystals. The nano-tensile properties and creep behavior of nickel polycrystalline nanopillars are investigated employing molecular dynamics simulations under different temperatures, stresses, and grain sizes. The mechanisms behind the creep behavior are analyzed in detail by calculating the stress exponents, grain boundary exponents, and activation energies. The novel results in this work are summarized in a deformation mechanism map and are in good agreement with Ashby’s experimental results for pure Ni. Through the deformation diagram, dislocation creep dominates the creep process when applying a high stress, while grain boundary sliding prevails at lower stress levels. These two mechanisms could also be coupled together for a low-stress but a high-temperature creep simulation. In this work, the dislocation creep is clearly observed and discussed in detail. Through analyzing the activation energies, vacancy diffusion begins to play an important role in enhancing the grain boundary creep in the creep process when the temperature is above 1000 K.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.language.isoende
dc.relation.uridoi:10.3390/molecules26092606de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc660de
dc.titleMolecular dynamics simulation of high-temperature creep behavior of nickel polycrystalline nanopillarsen
dc.typearticlede
dc.date.updated2021-05-03T18:10:10Z-
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.institutInstitut für Materialprüfung, Werkstoffkunde und Festigkeitslehrede
ubs.publikation.seiten13de
ubs.publikation.sourceMolecules 26 (2021), No. 2606de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
molecules-26-02606.pdf18,18 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons