Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13063
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorZaiser, Sebastian-
dc.contributor.authorCheung, Chun Tung-
dc.contributor.authorYang, Sen-
dc.contributor.authorDasari, Durga Bhaktavatsala Rao-
dc.contributor.authorRaeisi, Sadegh-
dc.contributor.authorWrachtrup, Jörg-
dc.date.accessioned2023-05-24T12:12:51Z-
dc.date.available2023-05-24T12:12:51Z-
dc.date.issued2021de
dc.identifier.issn2056-6387-
dc.identifier.other1846842840-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-130828de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13082-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13063-
dc.description.abstractThe achievable bounds of cooling quantum systems, and the possibility to violate them is not well-explored experimentally. For example, among the common methods to enhance spin polarization (cooling), one utilizes the low temperature and high-magnetic field condition or employs a resonant exchange with highly polarized spins. The achievable polarization, in such cases, is bounded either by Boltzmann distribution or by energy conservation. Heat-bath algorithmic cooling schemes (HBAC), on the other hand, have shown the possibility to surpass the physical limit set by the energy conservation and achieve a higher saturation limit in spin cooling. Despite, the huge theoretical progress, and few principle demonstrations, neither the existence of the limit nor its application in cooling quantum systems towards the maximum achievable limit have been experimentally verified. Here, we show the experimental saturation of the HBAC limit for single nuclear spins, beyond any available polarization in solid-state spin system, the Nitrogen-Vacancy centers in diamond. We benchmark the performance of our experiment over a range of variable reset polarizations (bath temperatures), and discuss the role of quantum coherence in HBAC.en
dc.description.sponsorshipSharif University of Technologyde
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipERC Projekt SMeLde
dc.description.sponsorshipMax-Planck-Gesellschaftde
dc.description.sponsorshipBaden-Württemberg Stiftungde
dc.description.sponsorshipVolkswagen Foundation (Volkswagen Stiftung)de
dc.description.sponsorshipProjekt DEALde
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/742610de
dc.relation.uridoi:10.1038/s41534-021-00408-zde
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.titleCyclic cooling of quantum systems at the saturation limiten
dc.typearticlede
dc.date.updated2023-03-28T05:27:13Z-
ubs.fakultaetMathematik und Physikde
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institut3. Physikalisches Institutde
ubs.institutZentrum für integrierte Quantenwissenschaft und -technologie (IQST)de
ubs.institutMax-Planck-Institut für Festkörperforschungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten7de
ubs.publikation.sourcenpj quantum information 7 (2021), No. 92de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:08 Fakultät Mathematik und Physik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s41534-021-00408-z.pdf1,01 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons