Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13072
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorDavidson-Marquis, Flavie-
dc.contributor.authorGargiulo, Julian-
dc.contributor.authorGómez-López, Esteban-
dc.contributor.authorJang, Bumjoon-
dc.contributor.authorKroh, Tim-
dc.contributor.authorMüller, Chris-
dc.contributor.authorZiegler, Mario-
dc.contributor.authorMaier, Stefan A.-
dc.contributor.authorKübler, Harald-
dc.contributor.authorSchmidt, Markus A.-
dc.contributor.authorBenson, Oliver-
dc.date.accessioned2023-05-26T07:53:47Z-
dc.date.available2023-05-26T07:53:47Z-
dc.date.issued2021de
dc.identifier.issn2047-7538-
dc.identifier.other1847407242-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-130916de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13091-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13072-
dc.description.abstractControlling coherent interaction between optical fields and quantum systems in scalable, integrated platforms is essential for quantum technologies. Miniaturised, warm alkali-vapour cells integrated with on-chip photonic devices represent an attractive system, in particular for delay or storage of a single-photon quantum state. Hollow-core fibres or planar waveguides are widely used to confine light over long distances enhancing light-matter interaction in atomic-vapour cells. However, they suffer from inefficient filling times, enhanced dephasing for atoms near the surfaces, and limited light-matter overlap. We report here on the observation of modified electromagnetically induced transparency for a non-diffractive beam of light in an on-chip, laterally-accessible hollow-core light cage. Atomic layer deposition of an alumina nanofilm onto the light-cage structure was utilised to precisely tune the high-transmission spectral region of the light-cage mode to the operation wavelength of the atomic transition, while additionally protecting the polymer against the corrosive alkali vapour. The experiments show strong, coherent light-matter coupling over lengths substantially exceeding the Rayleigh range. Additionally, the stable non-degrading performance and extreme versatility of the light cage provide an excellent basis for a manifold of quantum-storage and quantum-nonlinear applications, highlighting it as a compelling candidate for all-on-chip, integrable, low-cost, vapour-based photon delay.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipEuropean Commissionde
dc.description.sponsorshipBundesministerium für Bildung und Forschungde
dc.description.sponsorshipProjekt DEALde
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/797044de
dc.relation.uridoi:10.1038/s41377-021-00556-zde
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.titleCoherent interaction of atoms with a beam of light confined in a light cageen
dc.typearticlede
dc.date.updated2023-03-28T03:50:07Z-
ubs.fakultaetMathematik und Physikde
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institut5. Physikalisches Institutde
ubs.institutZentrum für integrierte Quantenwissenschaft und -technologie (IQST)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten10de
ubs.publikation.sourceLight : science & applications 10 (2021), No. 114de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:08 Fakultät Mathematik und Physik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s41377-021-00556-z.pdf2,5 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons