Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13149
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorErdal, Daniel-
dc.contributor.authorXiao, Sinan-
dc.contributor.authorNowak, Wolfgang-
dc.contributor.authorCirpka, Olaf A.-
dc.date.accessioned2023-06-14T10:12:10Z-
dc.date.available2023-06-14T10:12:10Z-
dc.date.issued2020de
dc.identifier.issn1436-3240-
dc.identifier.issn1436-3259-
dc.identifier.other1850923701-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-131687de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13168-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13149-
dc.description.abstractEnsemble-based uncertainty quantification and global sensitivity analysis of environmental models requires generating large ensembles of parameter-sets. This can already be difficult when analyzing moderately complex models based on partial differential equations because many parameter combinations cause an implausible model behavior even though the individual parameters are within plausible ranges. In this work, we apply Gaussian Process Emulators (GPE) as surrogate models in a sampling scheme. In an active-training phase of the surrogate model, we target the behavioral boundary of the parameter space before sampling this behavioral part of the parameter space more evenly by passive sampling. Active learning increases the subsequent sampling efficiency, but its additional costs pay off only for a sufficiently large sample size. We exemplify our idea with a catchment-scale subsurface flow model with uncertain material properties, boundary conditions, and geometric descriptors of the geological structure. We then perform a global-sensitivity analysis of the resulting behavioral dataset using the active-subspace method, which requires approximating the local sensitivities of the target quantity with respect to all parameters at all sampled locations in parameter space. The Gaussian Process Emulator implicitly provides an analytical expression for this gradient, thus improving the accuracy of the active-subspace construction. When applying the GPE-based preselection, 70-90% of the samples were confirmed to be behavioral by running the full model, whereas only 0.5% of the samples were behavioral in standard Monte-Carlo sampling without preselection. The GPE method also provided local sensitivities at minimal additional costs.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipSino-German (CSC-DAAD) Postdoc Scholarship Program 2018de
dc.description.sponsorshipProjekt DEALde
dc.language.isoende
dc.relation.uridoi:10.1007/s00477-020-01867-0de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc624de
dc.titleSampling behavioral model parameters for ensemble-based sensitivity analysis using Gaussian process emulation and active subspacesen
dc.typearticlede
dc.date.updated2023-05-15T07:57:16Z-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten1813-1830de
ubs.publikation.sourceStochastic environmental research and risk assessment 34 (2020), S. 1813-1830de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s00477-020-01867-0.pdf1,91 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons