Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13201
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorBeck, M.-
dc.contributor.authorRinaldi, A. P.-
dc.contributor.authorFlemisch, B.-
dc.contributor.authorClass, H.-
dc.date.accessioned2023-06-23T08:57:54Z-
dc.date.available2023-06-23T08:57:54Z-
dc.date.issued2020de
dc.identifier.issn1420-0597-
dc.identifier.issn1573-1499-
dc.identifier.other1851822275-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-132202de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13220-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13201-
dc.description.abstractSubsurface flow and geomechanics are often modeled with sequential approaches. This can be computationally beneficial compared with fully coupled schemes, while it requires usually compromises in numerical accuracy, at least when the sequential scheme is non-iterative. We discuss the influence of the choice of scheme on the numerical accuracy and the expected computational effort based on a comparison of a fully coupled scheme, a scheme employing a one-way coupling, and an iterative scheme using a fixed-stress split for two subsurface injection scenarios. All these schemes were implemented in the numerical simulator DuMux. This study identifies conditions of problem settings where differences due to the choice of the model approach are as important as differences in geologic features. It is shown that in particular transient and multiphase flow, effects can be causing significant deviations between non-iterative and iterative sequential schemes, which might be in the same order of magnitude as geologic uncertainty. An iterated fixed-stress split has the same numerical accuracy as a fully coupled scheme but only for a certain number of iterations which might use up the computational advantage of solving two smaller systems of equations rather than a big monolithical one.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipH2020 European Research Councilde
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/636811de
dc.relation.uridoi:10.1007/s10596-020-09987-wde
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc624de
dc.titleAccuracy of fully coupled and sequential approaches for modeling hydro- and geomechanical processesen
dc.typearticlede
dc.date.updated2023-05-15T11:41:43Z-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten1707-1723de
ubs.publikation.sourceComputational geosciences 24 (2020), S. 1707-1723de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s10596-020-09987-w.pdf2,74 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons