Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13236
Autor(en): Breitsprecher, Konrad
Janssen, Mathijs
Srimuk, Pattarachai
Mehdi, B. Layla
Presser, Volker
Holm, Christian
Kondrat, Svyatoslav
Titel: How to speed up ion transport in nanopores
Erscheinungsdatum: 2020
Dokumentart: Zeitschriftenartikel
Seiten: 10
Erschienen in: Nature communications 11 (2020), No. 6085
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-132552
http://elib.uni-stuttgart.de/handle/11682/13255
http://dx.doi.org/10.18419/opus-13236
ISSN: 2041-1723
Zusammenfassung: Electrolyte-filled subnanometre pores exhibit exciting physics and play an increasingly important role in science and technology. In supercapacitors, for instance, ultranarrow pores provide excellent capacitive characteristics. However, ions experience difficulties in entering and leaving such pores, which slows down charging and discharging processes. In an earlier work we showed for a simple model that a slow voltage sweep charges ultranarrow pores quicker than an abrupt voltage step. A slowly applied voltage avoids ionic clogging and co-ion trapping - a problem known to occur when the applied potential is varied too quickly - causing sluggish dynamics. Herein, we verify this finding experimentally. Guided by theoretical considerations, we also develop a non-linear voltage sweep and demonstrate, with molecular dynamics simulations, that it can charge a nanopore even faster than the corresponding optimized linear sweep. For discharging we find, with simulations and in experiments, that if we reverse the applied potential and then sweep it to zero, the pores lose their charge much quicker than they do for a short-circuited discharge over their internal resistance. Our findings open up opportunities to greatly accelerate charging and discharging of subnanometre pores without compromising the capacitive characteristics, improving their importance for energy storage, capacitive deionization, and electrochemical heat harvesting.
Enthalten in den Sammlungen:08 Fakultät Mathematik und Physik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s41467-020-19903-6.pdf1,97 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons