Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13255
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorKunz, P.-
dc.contributor.authorPaulisch, M.-
dc.contributor.authorOsenberg, M.-
dc.contributor.authorBischof, B.-
dc.contributor.authorManke, I.-
dc.contributor.authorNieken, U.-
dc.date.accessioned2023-06-29T08:45:22Z-
dc.date.available2023-06-29T08:45:22Z-
dc.date.issued2020de
dc.identifier.issn0169-3913-
dc.identifier.issn1573-1634-
dc.identifier.other1852818905-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-132740de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13274-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13255-
dc.description.abstractThe performance of the gas diffusion electrode (GDE) is crucial for technical processes like chlorine-alkali electrolysis. The function of the GDE is to provide an intimate contact between gaseous reactants, the solid catalyst, and the liquid electrolyte. To accomplish this, the GDE is composed of wetting and non-wetting materials to avoid electrolyte breakthrough. Knowledge of the spatial distribution of the electrolyte in the porous structure is a prerequisite for further improvement of GDE. Therefore, the ability of the electrolyte to imbibe into the porous electrode is studied by direct numeric simulations in a reconstructed porous electrode. The information on the geometry, including the information on silver and PTFE distribution of the technical GDE, is extracted from FIB/SEM imaging including a segmentation into the different phases. Modeling of wetting phenomena inside the GDE is challenging, since surface tension and wetting of the electrolyte on silver and PTFE surfaces must be included in a physically consistent manner. Recently, wetting was modeled from first principles on the continuum scale by introducing a contact line force. Here, the newly developed contact line force model is employed to simulate two-phase flow in the solid microstructures using the smoothed particle hydrodynamics (SPH) method. In this contribution, we present the complete workflow from imaging of the GDE to dynamic SPH simulations of the electrolyte intrusion process. The simulations are used to investigate the influence of addition of non-wetting PTFE as well as the application of external pressure differences between the electrolyte and the gas phase on the intrusion process.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipProjekt DEALde
dc.language.isoende
dc.relation.uridoi:10.1007/s11242-020-01396-yde
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc660de
dc.titlePrediction of electrolyte distribution in technical gas diffusion electrodes : from imaging to SPH simulationsen
dc.typearticlede
dc.date.updated2023-05-15T13:49:44Z-
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Chemische Verfahrenstechnikde
ubs.institutInstitut für Mechanische Verfahrenstechnikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten381-403de
ubs.publikation.sourceTransport in porous media 132 (2020), S. 381-403de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
s11242-020-01396-y.pdf2,94 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons