Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13357
Autor(en): Keleş, Ahmet Doğukan
Türksoy, Ramazan Tarık
Yucesoy, Can A.
Titel: The use of nonnormalized surface EMG and feature inputs for LSTM-based powered ankle prosthesis control algorithm development
Erscheinungsdatum: 2023
Dokumentart: Zeitschriftenartikel
Seiten: 17
Erschienen in: Frontiers in neuroscience 17 (2023), No. 1158280
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-133766
http://elib.uni-stuttgart.de/handle/11682/13376
http://dx.doi.org/10.18419/opus-13357
ISSN: 1662-453X
Zusammenfassung: Advancements in instrumentation support improved powered ankle prostheses hardware development. However, control algorithms have limitations regarding number and type of sensors utilized and achieving autonomous adaptation, which is key to a natural ambulation. Surface electromyogram (sEMG) sensors are promising. With a minimized number of sEMG inputs an economic control algorithm can be developed, whereas limiting the use of lower leg muscles will provide a practical algorithm for both ankle disarticulation and transtibial amputation. To determine appropriate sensor combinations, a systematic assessment of the predictive success of variations of multiple sEMG inputs in estimating ankle position and moment has to conducted. More importantly, tackling the use of nonnormalized sEMG data in such algorithm development to overcome processing complexities in real-time is essential, but lacking. We used healthy population level walking data to (1) develop sagittal ankle position and moment predicting algorithms using nonnormalized sEMG, and (2) rank all muscle combinations based on success to determine economic and practical algorithms. Eight lower extremity muscles were studied as sEMG inputs to a long-short-term memory (LSTM) neural network architecture: tibialis anterior (TA), soleus (SO), medial gastrocnemius (MG), peroneus longus (PL), rectus femoris (RF), vastus medialis (VM), biceps femoris (BF) and gluteus maximus (GMax). Five features extracted from nonnormalized sEMG amplitudes were used: integrated EMG (IEMG), mean absolute value (MAV), Willison amplitude (WAMP), root mean square (RMS) and waveform length (WL). Muscle and feature combination variations were ranked using Pearson’s correlation coefficient (r > 0.90 indicates successful correlations), the root-mean-square error and one-dimensional statistical parametric mapping between the original data and LSTM response. The results showed that IEMG+WL yields the best feature combination performance. The best performing variation was MG + RF + VM (rposition = 0.9099 and rmoment = 0.9707) whereas, PL (rposition = 0.9001, rmoment = 0.9703) and GMax+VM (rposition = 0.9010, rmoment = 0.9718) were distinguished as the economic and practical variations, respectively. The study established for the first time the use of nonnormalized sEMG in control algorithm development for level walking.
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Data_Sheet_1.DOCXSupplement1,36 MBUnknownÖffnen/Anzeigen
Data_Sheet_2.DOCXSupplement81,56 kBUnknownÖffnen/Anzeigen
Data_Sheet_3.DOCXSupplement42,49 kBUnknownÖffnen/Anzeigen
fnins-17-1158280.pdfArtikel2,54 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons