Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13420
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorPraditia, Timothy-
dc.contributor.authorKarlbauer, Matthias-
dc.contributor.authorOtte, Sebastian-
dc.contributor.authorOladyshkin, Sergey-
dc.contributor.authorButz, Martin V.-
dc.contributor.authorNowak, Wolfgang-
dc.date.accessioned2023-08-14T13:36:47Z-
dc.date.available2023-08-14T13:36:47Z-
dc.date.issued2022de
dc.identifier.issn1944-7973-
dc.identifier.issn0043-1397-
dc.identifier.other1860185606-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-134390de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13439-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13420-
dc.description.abstractImproved understanding of complex hydrosystem processes is key to advance water resources research. Nevertheless, the conventional way of modeling these processes suffers from a high conceptual uncertainty, due to almost ubiquitous simplifying assumptions used in model parameterizations/closures. Machine learning (ML) models are considered as a potential alternative, but their generalization abilities remain limited. For example, they normally fail to predict accurately across different boundary conditions. Moreover, as a black box, they do not add to our process understanding or to discover improved parameterizations/closures. To tackle this issue, we propose the hybrid modeling framework FINN (finite volume neural network). It merges existing numerical methods for partial differential equations (PDEs) with the learning abilities of artificial neural networks (ANNs). FINN is applied on discrete control volumes and learns components of the investigated system equations, such as numerical stencils, model parameters, and arbitrary closure/constitutive relations. Consequently, FINN yields highly interpretable results. We demonstrate FINN's potential on a diffusion‐sorption problem in clay. Results on numerically generated data show that FINN outperforms other ML models when tested under modified boundary conditions, and that it can successfully differentiate between the usual, known sorption isotherms. Moreover, we also equip FINN with uncertainty quantification methods to lay open the total uncertainty of scientific learning, and then apply it to a laboratory experiment. The results show that FINN performs better than calibrated PDE‐based models as it is able to flexibly learn and model sorption isotherms without being restricted to choose among available parametric models.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipProjekt DEALde
dc.language.isoende
dc.relation.uridoi:10.1029/2022WR033149de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc624de
dc.titleLearning groundwater contaminant diffusion‐sorption processes with a finite volume neural networken
dc.typearticlede
dc.date.updated2023-04-19T16:01:27Z-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Wasser- und Umweltsystemmodellierungde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten28de
ubs.publikation.sourceWater resources research 58 (2022), No. e2022WR033149de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
WRCR_WRCR26346.pdf5,14 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons