Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13524
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorKalu-Uka, Abraham-
dc.contributor.authorOzoegwu, Chigbogu-
dc.contributor.authorEberhard, Peter-
dc.date.accessioned2023-09-19T12:53:54Z-
dc.date.available2023-09-19T12:53:54Z-
dc.date.issued2023de
dc.identifier.issn1617-7061-
dc.identifier.other1860932339-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-135438de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13543-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13524-
dc.description.abstractUsually, end milling operations have been carried out using conventional uniform helix tools with fixed helix angles. Thus, many studies have been conducted to study the effects of these tools on the thermomechanical properties of a milling process. Recently, there have been works that point to the benefits of using harmonic endmills. Harmonic endmills consist of cutting edge profiles that have continuously harmonically varying helix angles. The variation is described using a harmonic function of axial position (elevation) of points on the cutting edge. In this work, a 3D finite element simulation using ABAQUS, is carried out for the complex milling process of Titanium alloy Ti6Al4V. The envelope of the harmonic tool is first generated using a set of MATLAB codes and stored in a Standard Triangle Language (.stl) format. The machine tool is introduced into an FEM program which has been designed to provide for dynamic effects, thermo‐mechanical coupling, material damage law and the criterion for contact associated with the milling process. A Johnson‐Cook material constitutive equation which combines the effects of strain hardening, strain softening, and temperature softening is used. To account for the chip separation criterion, the Johnson Cook damage evolution equation is used. The milling process simulation for Ti6Al4V is then carried out. In the end, the stress distribution and the cutting forces are obtained.en
dc.description.sponsorshipProjekt DEALde
dc.language.isoende
dc.relation.uridoi:10.1002/pamm.202200111de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de
dc.subject.ddc620de
dc.title3D FEM simulation of titanium alloy (Ti6Al4V) machining with harmonic endmill toolsen
dc.typearticlede
dc.date.updated2023-04-19T21:50:42Z-
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Technische und Numerische Mechanikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten6de
ubs.publikation.sourceProceedings in applied mathematics and mechanics 22 (2022), No. e202200111de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
PAMM_PAMM202200111.pdf1,35 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons