Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13534
Autor(en): Neßlinger, Vanessa
Welzel, Stefan
Rieker, Florian
Meinderink, Dennis
Nieken, Ulrich
Grundmeier, Guido
Titel: Thin organic‐inorganic anti‐fouling hybrid‐films for microreactor components
Erscheinungsdatum: 2022
Dokumentart: Zeitschriftenartikel
Seiten: 16
Erschienen in: Macromolecular reaction engineering 17 (2023), No. 2200043
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-135531
http://elib.uni-stuttgart.de/handle/11682/13553
http://dx.doi.org/10.18419/opus-13534
ISSN: 1862-8338
1862-832X
Zusammenfassung: Deposit formation and fouling in reactors for polymer production and processing especially in microreactors is a well‐known phenomenon. Despite the flow and pressure loss optimized static mixers, fouling occurs on the surfaces of the mixer elements. To improve the performance of such parts even further, stainless steel substrates are coated with ultra‐thin films which have low surface energy, good adhesion, and high durability. Perfluorinated organosilane (FOTS) films deposited via chemical vapor deposition (CVD) are compared with FOTS containing zirconium oxide sol‐gel films regarding the prevention of deposit formation and fouling during polymerization processes in microreactors. Both film structures led to anti‐adhesive properties of microreactor component surfaces during aqueous poly(vinylpyrrolidone) (PVP) synthesis. To determine the morphology and surface chemistry of the coatings, different characterization methods such as X‐ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy as well as microscopic methods such as field‐emission scanning electron microscopy (FE‐SEM) and atomic force microscopy (AFM) are applied. The surface free energy and wetting properties are analyzed by means of contact angle measurements. The application of thin film‐coated mixing elements in a microreactor demonstrates a significant lowering in pressure increase caused by a reduced deposit formation.
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
MREN_MREN202200043.pdf6,51 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons