Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13581
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorSchwarz, Anna-
dc.contributor.authorKeim, Jens-
dc.contributor.authorChiocchetti, Simone-
dc.contributor.authorBeck, Andrea-
dc.date.accessioned2023-10-12T07:33:43Z-
dc.date.available2023-10-12T07:33:43Z-
dc.date.issued2023de
dc.identifier.issn1617-7061-
dc.identifier.other1868998746-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-136008de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13600-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13581-
dc.description.abstractHyperbolic equations admit discontinuities in the solution and thus adequate and physically sound numerical schemes are necessary for their discretization. Second‐order finite volume schemes are a popular choice for the discretization of hyperbolic problems due to their simplicity. Despite the numerous advantages of higher‐order schemes in smooth regions, they fail at strong discontinuities. Crucial for the accurate and stable simulation of flow problems with discontinuities is the adequate and reliable limiting of the reconstructed slopes. Numerous limiters have been developed to handle this task. However, they are too dissipative in smooth regions or require empirical parameters which are globally defined and test case specific. Therefore, this paper aims to develop a new slope limiter based on deep learning and reinforcement learning techniques. For this, the proposed limiter is based on several admissibility constraints: positivity of the solution and a relaxed discrete maximum principle. This approach enables a slope limiter which is independent of a manually specified global parameter while providing an optimal slope with respect to the defined admissibility constraints. The new limiter is applied to several well‐known shock tube problems, which illustrates its broad applicability and the potential of reinforcement learning in numerics.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaftde
dc.description.sponsorshipProjekt DEALde
dc.description.sponsorshipEuropean Commissionde
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/730897de
dc.relation.uridoi:10.1002/pamm.202200207de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/de
dc.subject.ddc620de
dc.titleA reinforcement learning based slope limiter for second‐order finite volume schemesen
dc.typearticlede
dc.date.updated2023-07-11T21:46:15Z-
ubs.fakultaetLuft- und Raumfahrttechnik und Geodäsiede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Aerodynamik und Gasdynamikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten6de
ubs.publikation.sourceProceedings in applied mathematics and mechanics 23 (2022), No. e202200207de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:06 Fakultät Luft- und Raumfahrttechnik und Geodäsie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
PAMM_PAMM202200207.pdf910,07 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons