Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.18419/opus-13581
Langanzeige der Metadaten
DC Element | Wert | Sprache |
---|---|---|
dc.contributor.author | Schwarz, Anna | - |
dc.contributor.author | Keim, Jens | - |
dc.contributor.author | Chiocchetti, Simone | - |
dc.contributor.author | Beck, Andrea | - |
dc.date.accessioned | 2023-10-12T07:33:43Z | - |
dc.date.available | 2023-10-12T07:33:43Z | - |
dc.date.issued | 2023 | de |
dc.identifier.issn | 1617-7061 | - |
dc.identifier.other | 1868998746 | - |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-136008 | de |
dc.identifier.uri | http://elib.uni-stuttgart.de/handle/11682/13600 | - |
dc.identifier.uri | http://dx.doi.org/10.18419/opus-13581 | - |
dc.description.abstract | Hyperbolic equations admit discontinuities in the solution and thus adequate and physically sound numerical schemes are necessary for their discretization. Second‐order finite volume schemes are a popular choice for the discretization of hyperbolic problems due to their simplicity. Despite the numerous advantages of higher‐order schemes in smooth regions, they fail at strong discontinuities. Crucial for the accurate and stable simulation of flow problems with discontinuities is the adequate and reliable limiting of the reconstructed slopes. Numerous limiters have been developed to handle this task. However, they are too dissipative in smooth regions or require empirical parameters which are globally defined and test case specific. Therefore, this paper aims to develop a new slope limiter based on deep learning and reinforcement learning techniques. For this, the proposed limiter is based on several admissibility constraints: positivity of the solution and a relaxed discrete maximum principle. This approach enables a slope limiter which is independent of a manually specified global parameter while providing an optimal slope with respect to the defined admissibility constraints. The new limiter is applied to several well‐known shock tube problems, which illustrates its broad applicability and the potential of reinforcement learning in numerics. | en |
dc.description.sponsorship | Deutsche Forschungsgemeinschaft | de |
dc.description.sponsorship | Projekt DEAL | de |
dc.description.sponsorship | European Commission | de |
dc.language.iso | en | de |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/730897 | de |
dc.relation.uri | doi:10.1002/pamm.202200207 | de |
dc.rights | info:eu-repo/semantics/openAccess | de |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | de |
dc.subject.ddc | 620 | de |
dc.title | A reinforcement learning based slope limiter for second‐order finite volume schemes | en |
dc.type | article | de |
dc.date.updated | 2023-07-11T21:46:15Z | - |
ubs.fakultaet | Luft- und Raumfahrttechnik und Geodäsie | de |
ubs.fakultaet | Fakultätsübergreifend / Sonstige Einrichtung | de |
ubs.institut | Institut für Aerodynamik und Gasdynamik | de |
ubs.institut | Fakultätsübergreifend / Sonstige Einrichtung | de |
ubs.publikation.seiten | 6 | de |
ubs.publikation.source | Proceedings in applied mathematics and mechanics 23 (2022), No. e202200207 | de |
ubs.publikation.typ | Zeitschriftenartikel | de |
Enthalten in den Sammlungen: | 06 Fakultät Luft- und Raumfahrttechnik und Geodäsie |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
PAMM_PAMM202200207.pdf | 910,07 kB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons