Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13624
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorKlotz, Thomas-
dc.contributor.authorBleiler, Christian-
dc.contributor.authorRöhrle, Oliver-
dc.date.accessioned2023-10-16T12:04:19Z-
dc.date.available2023-10-16T12:04:19Z-
dc.date.issued2021-
dc.identifier.issn1664-042X-
dc.identifier.other1866401300-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-136431de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13643-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13624-
dc.description.abstractThe well-established sliding filament and cross-bridge theory explain the major biophysical mechanism responsible for a skeletal muscle's active behavior on a cellular level. However, the biomechanical function of skeletal muscles on the tissue scale, which is caused by the complex interplay of muscle fibers and extracellular connective tissue, is much less understood. Mathematical models provide one possibility to investigate physiological hypotheses. Continuum-mechanical models have hereby proven themselves to be very suitable to study the biomechanical behavior of whole muscles or entire limbs. Existing continuum-mechanical skeletal muscle models use either an active-stress or an active-strain approach to phenomenologically describe the mechanical behavior of active contractions. While any macroscopic constitutive model can be judged by it's ability to accurately replicate experimental data, the evaluation of muscle-specific material descriptions is difficult as suitable data is, unfortunately, currently not available. Thus, the discussions become more philosophical rather than following rigid methodological criteria. Within this work, we provide a extensive discussion on the underlying modeling assumptions of both the active-stress and the active-strain approach in the context of existing hypotheses of skeletal muscle physiology. We conclude that the active-stress approach resolves an idealized tissue transmitting active stresses through an independent pathway. In contrast, the active-strain approach reflects an idealized tissue employing an indirect, coupled pathway for active stress transmission. Finally the physiological hypothesis that skeletal muscles exhibit redundant pathways of intramuscular stress transmission represents the basis for considering a mixed-active-stress-active-strain constitutive framework.en
dc.language.isoende
dc.relation.uridoi:10.3389/fphys.2021.685531de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc570de
dc.titleA physiology-guided classification of active-stress and active-strain approaches for continuum-mechanical modeling of skeletal muscle tissueen
dc.typearticlede
dc.date.updated2021-09-08T04:55:17Z-
ubs.fakultaetBau- und Umweltingenieurwissenschaftende
ubs.fakultaetInterfakultäre Einrichtungende
ubs.institutInstitut für Modellierung und Simulation Biomechanischer Systemede
ubs.institutStuttgart Research Centre for Simulation Technology (SRC SimTech)de
ubs.publikation.seiten13de
ubs.publikation.sourceFrontiers in physiology 12 (2021), No. 685531de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
fphys-12-685531.pdf602,01 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons