Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13702
Autor(en): Morales Oreamuno, Maria Fernanda
Oladyshkin, Sergey
Nowak, Wolfgang
Titel: Information‐theoretic scores for Bayesian model selection and similarity analysis : concept and application to a groundwater problem
Erscheinungsdatum: 2023
Dokumentart: Zeitschriftenartikel
Seiten: 25
Erschienen in: Water resources research 59 (2023), No. e2022WR033711
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-137219
http://elib.uni-stuttgart.de/handle/11682/13721
http://dx.doi.org/10.18419/opus-13702
ISSN: 0043-1397
1944-7973
Zusammenfassung: Bayesian model selection (BMS) and Bayesian model justifiability analysis (BMJ) provide a statistically rigorous framework for comparing competing models through the use of Bayesian model evidence (BME). However, a BME-based analysis has two main limitations: (a) it does not account for a model's posterior predictive performance after using the data for calibration and (b) it leads to biased results when comparing models that use different subsets of the observations for calibration. To address these limitations, we propose augmenting BMS and BMJ analyses with additional information-theoretic measures: expected log-predictive density (ELPD), relative entropy (RE) and information entropy (IE). Exploring the connection between Bayesian inference and information theory, we explicitly link BME and ELPD together with RE and IE to highlight the information flow in BMS and BMJ analyses. We show how to compute and interpret these scores alongside BME, and apply the framework to a controlled 2D groundwater setup featuring five models, one of which uses a subset of the data for calibration. Our results show how the information-theoretic scores complement BME by providing a more complete picture concerning the Bayesian updating process. Additionally, we demonstrate how both RE and IE can be used to objectively compare models that feature different data sets for calibration. Overall, the introduced Bayesian information-theoretic framework can lead to a better-informed decision by incorporating a model's post-calibration predictive performance, by allowing to work with different subsets of the data and by considering the usefulness of the data in the Bayesian updating process.
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
WRCR_WRCR26748.pdf1,24 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons