Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13774
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorStröbel, Marco-
dc.contributor.authorKumar, Vikneshwara-
dc.contributor.authorBirke, Kai Peter-
dc.date.accessioned2023-11-24T11:08:17Z-
dc.date.available2023-11-24T11:08:17Z-
dc.date.issued2023de
dc.identifier.issn2313-0105-
dc.identifier.other1871120926-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-137936de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13793-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13774-
dc.description.abstractLithium-ion cells are widely used in various applications. For optimal performance and safety, it is crucial to have accurate knowledge of the temperature of each cell. However, determining the temperature for individual cells is challenging as the core temperature may significantly differ from the surface temperature, leading to the need for further research in this field. This study presents the first sensorless temperature estimation method for determining the core temperature of each cell within a battery module. The accuracy of temperature estimation is in the range of DT=1 K. The cell temperature is determined using an artificial neural network (ANN) based on electrochemical impedance spectroscopy (EIS) data. Additionally, by optimizing the frequency range, the number of measurement points, input neurons, measurement time, and computational effort are significantly reduced, while maintaining or even improving the accuracy of temperature estimation. The required time for the EIS measurement can be reduced to 0.5 s, and the temperature calculation takes place within a few milliseconds. The setup consists of cylindrical 18,650 lithium-ion cells assembled into modules with a 3s2p configuration. The core temperature of the cells was measured using sensors placed inside each cell. For the EIS measurement, alternating current excitation was applied across the entire module, and voltage was measured individually for each cell. Various State of Charge (SoC), ambient temperatures, and DC loads were investigated. Compared to other methods for temperature determination, the advantages of the presented study lie in the simplicity of the approach. Only one impedance chip per module is required as additional hardware to apply the AC current. The ANN consists of a simple feedforward network with only one layer in the hidden layer, resulting in minimal computational effort, making this approach attractive for real-world applications.en
dc.description.sponsorshipRobert Bosch GmbHde
dc.language.isoende
dc.relation.uridoi:10.3390/ batteries9090458de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc004de
dc.subject.ddc621.3de
dc.titleTemperature estimation in lithium-Ion cells assembled in series-parallel circuits using an artificial neural network based on impedance dataen
dc.typearticlede
dc.date.updated2023-10-09T09:24:54Z-
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Photovoltaikde
ubs.publikation.seiten16de
ubs.publikation.sourceBatteries 9 (2023), No. 458de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
batteries-09-00458.pdf1,15 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons