Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-13960
Autor(en): Duran, Rüya
Titel: Atom probe study on CuNi thin films : miscibility gap and grain boundary segregation
Sonstige Titel: Atomsondentomographie an CuNi-Dünnschichten : Mischungslücke und Korngrenzsegregation
Erscheinungsdatum: 2023
Dokumentart: Dissertation
Seiten: VIII, 126, 1
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-139794
http://elib.uni-stuttgart.de/handle/11682/13979
http://dx.doi.org/10.18419/opus-13960
Zusammenfassung: In dieser Arbeit wurde die Lage der Mischungslücke, und die Korngrenzsegregation im Legierungssystem, Kupfer-Nickel, per Atomsondentomographie (APT) analysiert. Zur Untersuchung der Mischungslücke eines binären Systems mit langsamer Diffusion wurde ein neues Verfahren verwendet. Multilagen aus Cu- und Ni- Dünnschichten wurden mittels Ionenstrahlbeschichtung (IBS) auf Wolframpfosten beschichtet und durch fokussierte Ionenstrahlung (FIB) geformt. Bei drei unterschiedlichen Temperaturen, zwischen 573 und 673 K, wurden isotherme Auslagerungssequenzen an einem Ultrahochvakuumofen (UHV) durchgeführt und der Mischungsprozess analysiert. Ein Modell des Diffusionsprozesses wurde mittels mathematischer Überlegungen erstellt. Durch das Fitten der experimentellen Kompositionsprofile mittels dieses Modells konnten die Gleichgewichtskonzentrationen der Schichten auch mit relativ kurzen Auslagerungszeiten ermittelt werden. Darüber hinaus konnten aus den diffusionskontrollierten Zeit- und Temperaturdaten physikalische Eigenschaften wie der effektive Diffusionskoeffizient (Gitterdiffusion einschließlich Defektdiffusion) bestimmt werden. Dieser betrug Deff = 1.86 ∙ 10-10 m2/s ∙ exp(-164 kJ mol-1/RT). Während dem Vermischen wurde die Änderung der multilagigen Mikrostruktur bis zur vollständigen Mischung bei 623 und 673 K beobachtet, wobei Korngrenzen als schneller Diffusionsweg eine wichtige Rolle spielen. Bei 573 K wurde Nichtmischbarkeit experimentell deutlich nachgewiesen, wobei die Phasengrenzen bei cNi=26 at.% und cNi=66 at.% liegen. Mit diesen Phasengrenzen wurde die Mischungslücke über eine Redlich-Kister-Parametrisierung der Gibbs‘schen freien Energie über den gesamten Konzentrationsbereich rekonstruiert. Hierin wurde für die kritische Temperatur, TC, 608 K bei einer Konzentration von 45 at% Ni gefunden. Im zweiten Teil wurde die Korngrenzsegregation durch die FIB/tEBSD- (Transmissions-Elektronen-Rückstreubeugung) Technik, in Korrelation zu APT-Messung charakterisiert. Vier Legierungen mit einem Ni-Anteil zwischen 25 und 85 at.% wurden auf Wolframpfosten per IBS beschichtet, und bei 700 K für 24 h wärmebehandelt. Die Segregation von Cu in die Korngrenzen wurde beobachtet. Durch die Verwendung eines theoretischen Models wurde die Exzess-Kurve über den gesamten Konzentrationsbereich, und die Korngrenz-Formationsenergie auf Basis der experimentellen Daten berechnet. Die tEBSD-Analyse während der FIB-Präparation erlaubt die Identifikation der Körner und deren Orientierung. Ein neues Verfahren wurde entwickelt, um mithilfe der Orientierung benachbarter Körner, Berechnungen zur Ermittlung der Korngrenzorientierung durchzuführen und somit die Orientierung natürlicher Korngrenzen zu bestimmen. Mit diesem Verfahren konnte der zeitliche Aufwand dieser anspruchsvollen Auswertung (verglichen zur herkömmlichen Methode mittels TEM-Untersuchung) stark reduziert werden, so dass eine quantitative Analyse vieler Korngrenzen möglich wurde. Aus den einzelnen Korngrenzorientierungen wurde die Korngrenzrotation, und die jeweiligen Anteile an Kippung und Drehung berechnet. Eine Abhängigkeit der Feststoffsegregation vom Kipp- und Drehanteil der Korngrenze wurde beobachtet, die am kleinsten für die reine Kipp- und Drehrotation war. Die ermittelten Segregationsweiten sind signifikant größer als die strukturellen Korngrenzweiten und bewegen sich zwischen 12 und 85 Å. Dieses Verhalten wurde durch eine künstliche Verbreiterung der Korngrenze erklärt, die durch eine Flugbahnabweichung der Korngrenzatome während der Verdampfung verursacht wurde. Eine Korngrenzweite von w0 = (10.1 ± 1.5) Å wurde für eine unverfälschte Korngrenze gefunden.
Enthalten in den Sammlungen:03 Fakultät Chemie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Dissertation_Duran.pdf7,71 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.