Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14156
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorSarkizi Shams Hajian, Christopher-
dc.contributor.authorHaringa, Cees-
dc.contributor.authorNoorman, Henk-
dc.contributor.authorTakors, Ralf-
dc.date.accessioned2024-04-02T13:41:17Z-
dc.date.available2024-04-02T13:41:17Z-
dc.date.issued2020de
dc.identifier.issn2227-9717-
dc.identifier.other1885091834-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-141751de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14175-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14156-
dc.description.abstractScaling up bioprocesses is one of the most crucial steps in the commercialization of bioproducts. While it is known that concentration and shear rate gradients occur at larger scales, it is often too risky, if feasible at all, to conduct validation experiments at such scales. Using computational fluid dynamics equipped with mechanistic biochemical engineering knowledge of the process, it is possible to simulate such gradients. In this work, concentration profiles for the by-products of baker’s yeast production are investigated. By applying a mechanistic black-box model, concentration heterogeneities for oxygen, glucose, ethanol, and carbon dioxide are evaluated. The results suggest that, although at low concentrations, ethanol is consumed in more than 90% of the tank volume, which prevents cell starvation, even when glucose is virtually depleted. Moreover, long exposure to high dissolved carbon dioxide levels is predicted. Two biomass concentrations, i.e., 10 and 25 g/L, are considered where, in the former, ethanol production is solely because of overflow metabolism while, in the latter, 10% of the ethanol formation is due to dissolved oxygen limitation. This method facilitates the prediction of the living conditions of the microorganism and its utilization to address the limitations via change of strain or bioreactor design or operation conditions. The outcome can also be of value to design a representative scale-down reactor to facilitate strain studies.en
dc.description.sponsorshipEuropean Union's Horizon 2020 Programmede
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/722361de
dc.relation.uridoi:10.3390/pr8121554de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc540de
dc.subject.ddc570de
dc.subject.ddc620de
dc.titlePredicting by-product gradients of baker’s yeast production at industrial scale : a practical simulation approachen
dc.typearticlede
dc.date.updated2023-11-14T05:53:10Z-
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Bioverfahrenstechnikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten19de
ubs.publikation.sourceProcesses 8 (2020), No. 1554de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
processes-08-01554.pdf2,85 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons