Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14203
Autor(en): Kammerer, Jochen A.
Duan, Xiaoyang
Neubrech, Frank
Schröder, Rasmus R.
Liu, Na
Pfannmöller, Martin
Titel: Stabilizing γ‐MgH2 at nanotwins in mechanically constrained nanoparticles
Erscheinungsdatum: 2021
Dokumentart: Zeitschriftenartikel
Seiten: 9
Erschienen in: Advanced materials 33 (2021), No. 2008259
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-142222
http://elib.uni-stuttgart.de/handle/11682/14222
http://dx.doi.org/10.18419/opus-14203
ISSN: 1521-4095
0935-9648
Zusammenfassung: Reversible hydrogen uptake and the metal/dielectric transition make the Mg/MgH2 system a prime candidate for solid‐state hydrogen storage and dynamic plasmonics. However, high dehydrogenation temperatures and slow dehydrogenation hamper broad applicability. One promising strategy to improve dehydrogenation is the formation of metastable γ‐MgH2. A nanoparticle (NP) design, where γ‐MgH2 forms intrinsically during hydrogenation is presented and a formation mechanism based on transmission electron microscopy results is proposed. Volume expansion during hydrogenation causes compressive stress within the confined, anisotropic NPs, leading to plastic deformation of β‐MgH2 via (301)β twinning. It is proposed that these twins nucleate γ‐MgH2 nanolamellas, which are stabilized by residual compressive stress. Understanding this mechanism is a crucial step toward cycle‐stable, Mg‐based dynamic plasmonic and hydrogen‐storage materials with improved dehydrogenation. It is envisioned that a more general design of confined NPs utilizes the inherent volume expansion to reform γ‐MgH2 during each rehydrogenation.
Enthalten in den Sammlungen:08 Fakultät Mathematik und Physik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
ADMA_ADMA202008259.pdf1,96 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons