Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14207
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorAnkenbauer, Andreas-
dc.contributor.authorNitschel, Robert-
dc.contributor.authorTeleki, Attila-
dc.contributor.authorMüller, Tobias-
dc.contributor.authorFavilli, Lorenzo-
dc.contributor.authorBlombach, Bastian-
dc.contributor.authorTakors, Ralf-
dc.date.accessioned2024-04-12T11:24:54Z-
dc.date.available2024-04-12T11:24:54Z-
dc.date.issued2021de
dc.identifier.issn1618-0240-
dc.identifier.issn1618-2863-
dc.identifier.other1886097186-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-142267de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14226-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14207-
dc.description.abstractPseudomonas putida KT2440 is emerging as a promising microbial host for biotechnological industry due to its broad range of substrate affinity and resilience to physicochemical stresses. Its natural tolerance towards aromatics and solvents qualifies this versatile microbe as promising candidate to produce next generation biofuels such as isobutanol. In this study, we scaled‐up the production of isobutanol with P. putida from shake flask to fed‐batch cultivation in a 30 L bioreactor. The design of a two‐stage bioprocess with separated growth and production resulted in 3.35 gisobutanol L-1. Flux analysis revealed that the NADPH expensive formation of isobutanol exceeded the cellular catabolic supply of NADPH finally causing growth retardation. Concomitantly, the cell counteracted to the redox imbalance by increased formation of 2‐ketogluconic thereby providing electrons for the respiratory ATP generation. Thus, P. putida partially uncoupled ATP formation from the availability of NADH. The quantitative analysis of intracellular pyridine nucleotides NAD(P)+ and NAD(P)H revealed elevated catabolic and anabolic reducing power during aerobic production of isobutanol. Additionally, the installation of micro‐aerobic conditions during production doubled the integral glucose‐to‐isobutanol conversion yield to 60 mgisobutanol gglucose-1 while preventing undesired carbon loss as 2‐ketogluconic acid.en
dc.description.sponsorshipProjekt DEALde
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/635536de
dc.relation.uridoi:10.1002/elsc.202000116de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc570de
dc.titleMicro‐aerobic production of isobutanol with engineered Pseudomonas putidaen
dc.typearticlede
dc.date.updated2023-11-14T04:26:15Z-
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Bioverfahrenstechnikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten475-488de
ubs.publikation.sourceEngineering in life sciences 21 (2021), S. 475-488de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
ELSC_ELSC1374.pdf1,17 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons