Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14263
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorKrämer, Konrad-
dc.contributor.authorBrock, Judith-
dc.contributor.authorHeyer, Arnd G.-
dc.date.accessioned2024-04-24T09:18:31Z-
dc.date.available2024-04-24T09:18:31Z-
dc.date.issued2022de
dc.identifier.issn1664-462X-
dc.identifier.other1887319077-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-142822de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14282-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14263-
dc.description.abstractIt has been shown repeatedly that exposure to elevated atmospheric CO2 causes an increased C/N ratio of plant biomass that could result from either increased carbon or - in relation to C acquisition - reduced nitrogen assimilation. Possible reasons for diminished nitrogen assimilation are controversial, but an impact of reduced photorespiration at elevated CO2 has frequently been implied. Using a mutant defective in peroxisomal hydroxy-pyruvate reductase (hpr1-1) that is hampered in photorespiratory turnover, we show that indeed, photorespiration stimulates the glutamine-synthetase 2 (GS) / glutamine-oxoglutarate-aminotransferase (GOGAT) cycle, which channels ammonia into amino acid synthesis. However, mathematical flux simulations demonstrated that nitrate assimilation was not reduced at elevated CO2, pointing to a dilution of nitrogen containing compounds by assimilated carbon at elevated CO2. The massive growth reduction in the hpr1-1 mutant does not appear to result from nitrogen starvation. Model simulations yield evidence for a loss of cellular energy that is consumed in supporting high flux through the GS/GOGAT cycle that results from inefficient removal of photorespiratory intermediates. This causes a futile cycling of glycolate and hydroxy-pyruvate. In addition to that, accumulation of serine and glycine as well as carboxylates in the mutant creates a metabolic imbalance that could contribute to growth reduction.en
dc.language.isoende
dc.relation.uridoi:10.3389/fpls.2022.897924de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc570de
dc.titleInteraction of nitrate assimilation and photorespiration at elevated CO2en
dc.typearticlede
dc.date.updated2023-11-14T01:29:48Z-
ubs.fakultaetEnergie-, Verfahrens- und Biotechnikde
ubs.institutInstitut für Biomaterialien und biomolekulare Systemede
ubs.publikation.seiten14de
ubs.publikation.sourceFrontiers in plant science 13 (2022), No. 897924de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Data_Sheet_1.pdfSupplement100,31 kBAdobe PDFÖffnen/Anzeigen
Data_Sheet_2.pdfSupplement36,29 kBAdobe PDFÖffnen/Anzeigen
fpls-13-897924.pdfArtikel1,86 MBAdobe PDFÖffnen/Anzeigen
Image_1.pdfSupplement176,71 kBAdobe PDFÖffnen/Anzeigen
Image_2.pdfSupplement112,51 kBAdobe PDFÖffnen/Anzeigen
Image_3.pdfSupplement89,9 kBAdobe PDFÖffnen/Anzeigen
Table_1.XLSXSupplement63,98 kBUnknownÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons