Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14364
Autor(en): Ströbel, Robin
Bott, Alexander
Wortmann, Andreas
Fleischer, Jürgen
Titel: Monitoring of tool and component wear for self-adaptive Digital Twins : a multi-stage approach through anomaly detection and wear cycle analysis
Erscheinungsdatum: 2023
Dokumentart: Zeitschriftenartikel
Seiten: 27
Erschienen in: Machines 11 (2023), No. 1032
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-143839
http://elib.uni-stuttgart.de/handle/11682/14383
http://dx.doi.org/10.18419/opus-14364
ISSN: 2075-1702
Zusammenfassung: In today’s manufacturing landscape, Digital Twins play a pivotal role in optimising processes and deriving actionable insights that extend beyond on-site calculations. These dynamic representations of systems demand real-time data on the actual state of machinery, rather than static images depicting idealized configurations. This paper presents a novel approach for monitoring tool and component wear in CNC milling machines by segmenting and classifying individual machining cycles. The method assumes recurring sequences, even with a batch size of 1, and considers a progressive increase in tool wear between cycles. The algorithms effectively segment and classify cycles based on path length, spindle speed and cycle duration. The tool condition index for each cycle is determined by considering all axis signals, with upper and lower thresholds established for quantifying tool conditions. The same approach is adapted to predict component wear progression in machine tools, ensuring robust condition determination. A percentage-based component state description is achieved by comparing it to the corresponding Tool Condition Codes (TCC) range. This method provides a four-class estimation of the component state. The approach has demonstrated robustness in various validation cases.
Enthalten in den Sammlungen:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
machines-11-01032-v2.pdf11,07 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons