Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14397
Autor(en): Mast, Yannic
Wild, Moritz
Takors, Ralf
Titel: Optimizing mass transfer in multiphase fermentation : the role of drag models and physical conditions
Erscheinungsdatum: 2023
Dokumentart: Zeitschriftenartikel
Seiten: 22
Erschienen in: Processes 12 (2024), No. 45
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-144164
http://elib.uni-stuttgart.de/handle/11682/14416
http://dx.doi.org/10.18419/opus-14397
ISSN: 2227-9717
Zusammenfassung: Detailed knowledge of the flow characteristics, bubble movement, and mass transfer is a prerequisite for the proper design of multiphase bioreactors. Often, mechanistic spatiotemporal models and computational fluid dynamics, which intrinsically require computationally demanding analysis of local interfacial forces, are applied. Typically, such approaches use volumetric mass-transfer coefficient (kLa) models, which have demonstrated their predictive power in water systems. However, are the related results transferrable to multiphase fermentations with different physicochemical properties? This is crucial for the proper design of biotechnological processes. Accordingly, this study investigated a given set of mass transfer data to characterize the fermentation conditions. To prevent time-consuming simulations, computational efforts were reduced using a force balance stationary 0-dimension model. Therefore, a competing set of drag models covering different mechanistic assumptions could be evaluated. The simplified approach of disregarding fluid movement provided reliable results and outlined the need to identify the liquid diffusion coefficients in fermentation media. To predict the rising bubble velocities uB, the models considering the Morton number (Mo) showed superiority. The mass transfer coefficient kL was best described using the well-known Higbie approach. Taken together, the gas hold-up, specific surface area, and integral mass transfer could be accurately predicted.
Enthalten in den Sammlungen:04 Fakultät Energie-, Verfahrens- und Biotechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
processes-12-00045-v2.pdf3,86 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons