Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
http://dx.doi.org/10.18419/opus-14444
Autor(en): | Bott, Alexander Anderlik, Simon Ströbel, Robin Fleischer, Jürgen Worthmann, Andreas |
Titel: | Framework for holistic online optimization of milling machine conditions to enhance machine efficiency and sustainability |
Erscheinungsdatum: | 2024 |
Dokumentart: | Zeitschriftenartikel |
Seiten: | 22 |
Erschienen in: | Machines 12 (2024), No. 153 |
URI: | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-144635 http://elib.uni-stuttgart.de/handle/11682/14463 http://dx.doi.org/10.18419/opus-14444 |
ISSN: | 2075-1702 |
Zusammenfassung: | This study addresses the challenge of the optimization of milling in industrial production, focusing on developing and applying a novel framework for optimising manufacturing processes. Recognising a gap in current methods, the research primarily targets the underutilisation of advanced data analysis and machine learning techniques in industrial settings. The proposed framework integrates these technologies to refine machining parameters more effectively than conventional approaches. The research method involved the development of the framework for the realisation and analysis of measurement data from milling machines, focusing on six machine parts and employing a machine learning system for optimization and evaluation. The developed and realised framework in the form of a software demonstrator showed its applicability in different experiments. This research enables easy deployment of data-driven techniques for sustainable industrial practices, highlighting the potential of this framework for transforming manufacturing processes. |
Enthalten in den Sammlungen: | 07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
machines-12-00153-v2.pdf | 1,94 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons