Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14498
Autor(en): Behr, Alexander S.
Surkamp, Julia
Abbaspour, Elnaz
Häußler, Max
Lütz, Stephan
Pleiss, Jürgen
Kockmann, Norbert
Rosenthal, Katrin
Titel: Fluent integration of laboratory data into biocatalytic process simulation using EnzymeML, DWSIM, and ontologies
Erscheinungsdatum: 2024
Dokumentart: Zeitschriftenartikel
Seiten: 13
Erschienen in: Processes 12 (2024), No. 597
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-145178
http://elib.uni-stuttgart.de/handle/11682/14517
http://dx.doi.org/10.18419/opus-14498
ISSN: 2227-9717
Zusammenfassung: The importance of biocatalysis for ecologically sustainable syntheses in the chemical industry and for applications in everyday life is increasing. To design efficient applications, it is important to know the related enzyme kinetics; however, the measurement is laborious and error-prone. Flow reactors are suitable for rapid reaction parameter screening; here, a novel workflow is proposed including digital image processing (DIP) for the quantification of product concentrations, and the use of structured data acquisition with EnzymeML spreadsheets combined with ontology-based semantic information, leading to rapid and smooth data integration into a simulation tool for kinetics evaluation. One of the major findings is that a flexibly adaptive ontology is essential for FAIR (findability, accessibility, interoperability, reusability) data handling. Further, Python interfaces enable consistent data transfer.
Enthalten in den Sammlungen:03 Fakultät Chemie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
processes-12-00597-v2.pdf2,61 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons